Exploring Non-Coding RNA Regulation of the Blood-Brain Barrier in Neurodegenerative Diseases: A Systematic Review.

J Neurochem

Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurodegenerative diseases (NDs) are characterized by progressive neuronal loss and dysfunction, leading to significant cognitive and motor impairments. The disruption of the blood-brain barrier (BBB) integrity, a key regulator of central nervous system homeostasis, emerges as a critical factor in the pathogenesis of these disorders. Accumulating evidence implicates non-coding RNAs, particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in BBB regulation. However, the intricate network governing BBB dysfunction and consequent neurodegeneration remains obscure. This systematic review maps the convergent microRNA networks in Alzheimer's, Parkinson's, and multiple sclerosis, unveiling their putative roles in BBB modulation. We analyzed data from 11 peer-reviewed clinical studies, identifying key miRNAs such as hsa-miR-155, hsa-miR-22, hsa-miR-146a, hsa-miR-100-3p, and hsa-miR-182-5p as critical regulators of BBB permeability and inflammatory responses. Enrichment analysis revealed that these miRNAs modulate pathways related to inflammation, oxidative stress, and neuronal survival. Our review also uncovered extensive interactions between these miRNAs and transcription factors like JUN, RELA, STAT3, and TP53, as well as lncRNAs such as MALAT1, NEAT1, NORAD, and SNHG16. These interactions highlight complex regulatory networks involving miRNA sponging and chromatin remodeling, which may play crucial roles in maintaining BBB integrity. These analyses underscore the importance of miRNA-mediated regulatory networks in BBB function and offer insights into potential therapeutic targets for NDs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.70031DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
neurodegenerative diseases
8
systematic review
8
bbb integrity
8
non-coding rnas
8
regulatory networks
8
bbb
7
exploring non-coding
4
non-coding rna
4
rna regulation
4

Similar Publications

Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.

View Article and Find Full Text PDF

Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.

View Article and Find Full Text PDF

Mechanistic Insights and Translational Therapeutics of Neurovascular Unit Dysregulation in Vascular Cognitive Impairment.

J Integr Neurosci

August 2025

Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, 211166 Nanjing, Jiangsu, China.

Cognitive impairment represents a progressive neurodegenerative condition with severity ranging from mild cognitive impairment (MCI) to dementia and exerts significant burdens on both individuals and healthcare systems. Vascular cognitive impairment (VCI) represents a heterogeneous clinical continuum, spanning a spectrum from subcortical ischemic VCI (featuring small vessel disease, white matter lesions, and lacunar infarcts) to mixed dementia, where vascular and Alzheimer's-type pathologies coexist. While traditionally linked to macro- and microvascular dysfunction, the mechanisms underlying VCI remain complex.

View Article and Find Full Text PDF

Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.

View Article and Find Full Text PDF

Glioma therapy faces substantial challenges primarily due to the restrictive nature of the blood-brain barrier (BBB), limiting effective drug penetration and reducing therapeutic efficacy. Recent advancements in novel drug delivery systems (DDS), including exosome-mediated carriers, drug conjugates, and ultrasound-assisted delivery, have demonstrated promising results in overcoming these limitations. Exosomes offer superior biocompatibility, efficient BBB crossing, and natural cellular targeting capabilities; drug conjugates enable highly selective drug delivery through tumor-specific ligands; and ultrasound-assisted systems transiently disrupt the BBB to permit greater drug entry.

View Article and Find Full Text PDF