98%
921
2 minutes
20
Introduction: The green synthesis of silver nanoparticles has gained attention for being environmentally friendly and cost-effective. This study investigates the synthesis of silver nanoparticles using neem and turmeric extracts, which serve as natural reducing and capping agents, with a focus on characterizing these nanoparticles and assessing their antimicrobial properties against oral pathogens.
Materials And Methods: Neem and turmeric extracts were prepared by heating their powdered forms in distilled water, followed by filtration. The extracts were then mixed with a silver nitrate solution, and the reaction was stirred for 24-48 h. The resulting nanoparticles were characterized using UV-Visible spectroscopy, SEM, EDAX, and XRD analysis. The antimicrobial activity of the nanoparticles was tested against four oral pathogens using the agar well diffusion method.
Results: Successful synthesis of silver nanoparticles was confirmed by a color change and characterization analyses. UV-Visible spectroscopy showed a peak at 440 nm, indicating nanoparticle formation. SEM revealed spherical and uniform nanoparticles, while EDAX confirmed the presence of silver. XRD analysis showed the crystalline nature of the nanoparticles, with sizes ranging from 4 nm to 14.81 nm. The nanoparticles exhibited significant antimicrobial activity against , Streptococcus mutans, and Lactobacillus species, but were less effective against Candida albicans.
Conclusion: The study demonstrates the effectiveness of neem and turmeric extracts in the green synthesis of silver nanoparticles, which exhibited notable antimicrobial activity. This research underscores the potential of plant-mediated synthesis for developing eco-friendly antimicrobial agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875684 | PMC |
http://dx.doi.org/10.1016/j.jobcr.2025.02.005 | DOI Listing |
Naturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
September 2025
Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran;
Asthma, a respiratory tract disease, is characterized by inflammation and obstruction of airway. Inflammatory cells play a significant role in allergic asthma, and there is no complete cure for asthma. One of the new approaches in medicines is nanoparticle-base treatment.
View Article and Find Full Text PDFClin Exp Dent Res
October 2025
Laboratory of Experimental Physiopathology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, Brazil.
Objectives: This study aimed to compare the effects of silver nanoparticles (AgNPs) synthesized with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) versus a commercial treatment and photobiomodulation in rat palatal wounds.
Methods: In vitro cell viability tests assessed nanoparticle toxicity.
Clin Cosmet Investig Dent
August 2025
Clinical Science Department, Ajman University, Ajman, United Arab Emirates.
Aim: The aim of this study was to determine the impact of different nanoparticle concentrations with endodontic bioceramic sealer. It was assessed the combination by analyzing the correlation between the degree of conversion (DC) and antibacterial efficacy. And assess the penetration depth into the lateral canals.
View Article and Find Full Text PDFFront Microbiol
August 2025
Department of Microbiology and Botany, Faculty of Biology, University of Bucharest, Bucharest, Romania.
Introduction: This study evaluates two innovative protective treatments for wooden cultural heritage objects vulnerable to biodeterioration. The first involves polyacrylic resin solutions embedded with silver nanoparticles (AgNPs), while the second uses the siloxane-based coupling agent 3-mercaptopropyltrimethoxysilane (3-MPTMS) to enhance AgNP adhesion to wood surfaces.
Methods: Antimicrobial, anti-biofilm, and anti-metabolic activities were assessed using both qualitative and quantitative assays against biodeteriogenic strains (, and ).