Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human-machine interfaces based on myoelectric signals typically use screen-guided training (SGT) for model calibration, but this approach fails to capture realistic user behaviors. This study evaluates a user-in-the-loop context-informed incremental learning (CIIL) framework, comparing SGT, SGT followed by CIIL adaptation (SGT-A), and a novel zero-shot adaptation (ZS-A) CIIL approach that begins adapting with no prior training. Sixteen participants completed a Fitts' Law targeting task using these control schemes, with performance measured via online throughput and offline classification accuracy. Despite lower offline accuracy, the ZS-A model achieved the highest online throughput (1.47 ± 0.46 bits/s), significantly outperforming the SGT baseline (1.15 ± 0.37 bits/s) and reached competitive performance within 200 seconds. To further enhance control performance, a novel adaptive sigmoid-based proportional control mapping was introduced, dynamically adjusting control signals to allow precise control near neutral positions and rapid movements at higher activation levels, better aligning with natural user behaviors. These findings demonstrate that CIIL can surpass traditional SGT methods in online performance and emphasize the value of real-time user-in-the-loop data for developing adaptable and intuitive myoelectric interfaces, with implications for prosthetics, rehabilitation, and telerobotics.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2024.3518059DOI Listing

Publication Analysis

Top Keywords

incremental learning
8
user behaviors
8
online throughput
8
control
6
sgt
5
screen guided
4
guided training
4
training capture
4
capture goal-oriented
4
goal-oriented behaviours
4

Similar Publications

ResDeepGS: A deep learning-based method for crop phenotype prediction.

Methods

September 2025

School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China; Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, Henan, China. Electronic address:

Genomic selection (GS) is a breeding technique that utilizes genomic markers to predict the genetic potential of crops and animals. This approach holds significant promise for accelerating the improvement of agronomic traits and addressing food security challenges. While traditional breeding methods based on statistical or machine learning techniques have been useful in predicting traits for some crops, they often fail to capture the complex interactions between genotypes and phenotypes.

View Article and Find Full Text PDF

The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.

View Article and Find Full Text PDF

In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.

View Article and Find Full Text PDF

Emotion annotation in code-mixed languages like Hinglish (Hindi-English) presents unique challenges due to linguistic complexity and resource constraints. This study introduces a hybrid active learning framework that combines lexical rules, machine learning, and iterative expert feedback to achieve cost-efficient, high-accuracy emotion annotation. Grounded in psychological theories of emotion, including Discrete Emotions Theory and Cognitive Appraisal Theory, the framework employs bilingual emotion dictionaries (e.

View Article and Find Full Text PDF

Class incremental learning (CIL) offers a promising framework for continuous fault diagnosis (CFD), allowing networks to accumulate knowledge from streaming industrial data and recognize new fault classes. However, current CIL methods assume a balanced data stream, which does not align with the long-tail distribution of fault classes in real industrial scenarios. To fill this gap, this article investigates the impact of long-tail bias in the data stream on the CIL training process through the experimental analysis.

View Article and Find Full Text PDF