98%
921
2 minutes
20
Dual-band photodetection of ultraviolet (UV) and infrared (IR) light is an advanced technology aimed at simultaneously or selectively detecting signals from these two distinct wavelength bands. This technique offers broad application prospects, particularly in environments requiring multispectral information. In this work, a solar-blind UV photodetector made from an amorphous GaO (a-GaO) thin film was combined with a short-wave infrared photodetector made from a HgTe colloidal quantum dot (CQD) film. The photodetector exhibited a high responsivity of up to 1808 A W, detectivity of 3.88 × 10 Jones, and an external quantum efficiency of 8.8 × 10% at UV wavelength as well as a responsivity of 0.25 A W, detectivity of 1.45 × 10 Jones, and an external quantum efficiency of 15.5% at short-wave infrared wavelength. Furthermore, corona discharge detection using this photodetector was demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868912 | PMC |
http://dx.doi.org/10.1039/d4na00978a | DOI Listing |
Light Sci Appl
September 2025
Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
While non-destructive in-line monitoring at manufacturing sites is essential for safe distribution cycles of pharmaceuticals, efforts are still insufficient to develop analytical systems for detailed dynamic visualisation of foreign substances and material composition in target pills. Although spectroscopies, expected towards pharma testing, have faced technical challenges in in-line setups for bulky equipment housing, this work demonstrates compact dynamic photo-monitoring systems by selectively extracting informative irradiation-wavelengths from comprehensive optical references of target pills. This work develops a non-destructive in-line dynamic inspection system for pharma agent pills with carbon nanotube (CNT) photo-thermoelectric imagers and the associated ultrabroadband sub-terahertz (THz)-infrared (IR) multi-wavelength monitoring.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Jorgensen Hall, 855 North 16th Str., NE 68588-0299, Lincoln, Nebraska, 68588-0007, UNITED STATES.
The band structure of ultrathin Pd(111) thin films grown on the CrO(0001) surface was studied by angular-resolved photoemission spectroscopy (ARPES) combined with first-principles calculations. The CrO(0001) interface and the expanded Pd lattice constant appears to significantly affect the occupied band structure of an ultrathin palladium film. A characteristic band splitting is seen in the experimental occupied electronic structure, forming a hexagonal pattern approximately half-way from the Γ" point to the surface Brillouin zone boundary.
View Article and Find Full Text PDFSmall
September 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic
Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Engineering, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.
View Article and Find Full Text PDFNanoscale
September 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.
View Article and Find Full Text PDF