Bio-Based Multicompartment Photonic Pigments: Unlocking Non-Iridescent Pure RGB Structural Colors for Versatile Chromatic Engineering.

Adv Mater

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-iridescent photonic glass pigments of block copolymers show great potential for sustainable structural coloration. However, the ability to create accurate RGB color mixtures for real-world applications is limited by the prevalent use of non-degradable, fossil oil-derived components and the difficulty in achieving pure red hues. This work presents an alternative strategy for achieving more sustainable structural coloration by fabricating composite photonic pigments through controlled self-assembly of water, vegetable oil, and biodegradable bottlebrush block copolymers (BBCPs) in a complex emulsion system. The obtained photonic balls feature unprecedented multicompartment structures characterized by a short-range ordered assembly of water nanodroplets stabilized by the BBCPs, along with oil droplets stabilized by these nanodroplets, which substantially enhances resistance to Ostwald ripening. Furthermore, a new structural model is introduced to eliminate disordered scattering, successfully creating a pure red structural color and overcoming a long-standing limitation in versatile chromatic engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202501303DOI Listing

Publication Analysis

Top Keywords

photonic pigments
8
versatile chromatic
8
chromatic engineering
8
block copolymers
8
sustainable structural
8
structural coloration
8
pure red
8
structural
5
bio-based multicompartment
4
photonic
4

Similar Publications

Disordered Inverse Photonic Beads Assembled From Linear Block Copolymers.

Angew Chem Int Ed Engl

September 2025

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, UNIST-gil 50, Ulsan, 44919, Republic of Korea.

Structurally colored colloids, or photonic pigments, offer a sustainable alternative to conventional dyes, yet existing systems are constrained by limited morphologies and complex synthesis. In particular, achieving angle-independent color typically relies on disordered inverse architectures formed from synthetically demanding bottlebrush block copolymers (BCPs), hindering scalability and functional diversity. Here, we report a conceptually distinct strategy to assemble three-dimensional inverse photonic glass microparticles using amphiphilic linear BCPs (poly(styrene-block-4-vinylpyridine), PS-b-P4VP) via an emulsion-templated process.

View Article and Find Full Text PDF

Chlorella vulgaris heterotrophy-to-phototrophy conversion dynamics are mostly independent of light intensity.

Bioresour Technol

September 2025

Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France. Electronic address:

Trophic conversion - a sequential cultivation strategy combining heterotrophic and phototrophic growth - offers a promising route for large-scale microalgae production by coupling the high biomass yields of heterotrophy with the biochemical advantages of phototrophy. Despite its potential, the cellular mechanisms governing this transition remain poorly understood. Here is presented the first mechanistic dissection of trophic conversion in Chlorella vulgaris, using isoactinic light conditions (30-600 µmol photons/m/s) and inocula with varied physiological states.

View Article and Find Full Text PDF

Crop leaves absorb approximately 90% of visible photons (400 - 700 nm) but transmit or reflect most far-red (FR) photons (700 - 800 nm). However, some cyanobacteria use FR photons up to 800 nm by incorporating chlorophyll (Chl) d or/and f into their photosystems. Here, we use a 3D canopy model to evaluate whether introducing these pigments could improve photosynthetic performance of field grown soybean.

View Article and Find Full Text PDF

One of the main limitations of photodynamic therapy (PDT) is hypoxia, which is caused by increased tumour proliferation creating a hypoxic tumour microenvironment (TME), as well as oxygen consumption by PDT. Hypoxia-activated prodrugs (HAPs), such as molecules containing aliphatic or aromatic -oxide functionalities, are non-toxic prodrugs that are activated in hypoxic regions, where they are reduced into their cytotoxic form. The (oxido)pyridylporphyrins tested in this work were synthesised as potential HAPs from their AB pyridylporphyrin precursors, using -chloroperbenzoic acid (-CPBA) as an oxidising reagent.

View Article and Find Full Text PDF

TIGER: A tdTomato in vivo genome-editing reporter mouse for investigating precision-editor delivery approaches.

Proc Natl Acad Sci U S A

September 2025

Gavin Herbert Eye Institute-Robert M. Brunson Center for Translational Vision Research, Department of Ophthalmology and Visual Sciences, University of California Irvine, Irvine, CA 92697.

In vivo genome editing has the potential to address many inherited and environmental disorders. However, a major hurdle for the clinical translation of genome editing is safe, efficient delivery to disease-relevant tissues. A modality-agnostic reporter animal model that facilitates rapid, precise, and quantifiable assessment of functional delivery and editing could greatly enhance the evaluation and translation of delivery technologies.

View Article and Find Full Text PDF