98%
921
2 minutes
20
Additive manufacturing (AM) has risen in popularity due to its ability to produce complex shapes in a material-efficient way. However, to produce objects with advanced properties, complex multimaterial strategies are often employed. This one-polymer-one-property paradigm significantly slows down the application of AM, and in particular of fused deposition modeling (FDM), for manufacturing of functional objects. In this study advantage of pluripotency in materials is taken, i.e., the ability to attain different properties from a single stock, to afford mechanically tunable 3D printed dynamic thermosets (moduli from 2 MPa - 3 GPa, 1500× increase, Stress at break from 2 to 70 MPa, 35× increase). To do so, FDM-compatible CO-derived dissociative polymer networks are designed that undergo a dynamic reaction-induced phase-separation (DRIPS). This strategy enables the control of the size of the rigid phase with a simple post-printing thermal treatment, cascading in spatially patterned mechanical properties. This study showcases new directions for the 3D printing communities, with deep implications in soft robotics and compliant mechanics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202417355 | DOI Listing |
Nat Prod Res
September 2025
Shaanxi Jinhuifang Traditional Chinese Medicine Technology Co., Ltd., Zhenba, China.
Rhamnosyl Icariside II, a rare secondary flavonoid glycoside in , exhibits superior stability and bioactivity than the primary flavonoid glycosides. Converting primary flavonoid glycoside into Rhamnosyl Icariside II is desirable due to separate extraction methods are inefficient. In this study, a recyclable biphasic enzymatic hydrolysis process of extracts to produce high purity RIc was established and optimised.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
Anaerobic co-digestion of sulfur-containing organic wastes with waste-activated sludge containing iron-phosphorus compounds (FePs) was recently suggested as an environment-friendly strategy to promote phosphate release, energy recovery, and hydrogen sulfide (HS) control. Nevertheless, the mechanistic coupling between FePs speciation and the concurrent transformation of carbon, sulfur, iron, and phosphorus within this system remains to be fully elucidated. To address this knowledge gap, methionine, a typical hydrolysis product of sulfur-containing organics, and five FePs prevalent in sludge (ferric-phosphate tetrahydrate (FePO⋅4HO), ferric-phosphate dihydrate (FePO⋅2HO), vivianite (Fe(PO)·8HO), phosphate coprecipitated with Fe(III) (COP-P), and phosphate adsorption on hydrous ferric oxide (HFO-P)) were selected to elucidate C-S-Fe-P transformations in this study.
View Article and Find Full Text PDFWaste Manag
September 2025
Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China. Electronic address:
Resource recycling of construction waste can be an effective substitute for the production of building materials, significantly reduce environmental pollution and ecological damage while lowering carbon emissions. However, existing studies lack a comprehensive and accurate comparison of different recycling processes, making it difficult to fully and accurately determine the associated carbon reduction potential. In this paper, process life cycle assessment (LCA) and hybrid LCA models are used to calculate carbon emissions from resource recycling of construction waste.
View Article and Find Full Text PDFSci Rep
September 2025
Management and Conservation of Soil and Water Laboratory, Federal University of Vicosa, Florestal Campus, Minas Gerais, Brazil.
Soil functions as the active force managing diverse biogeochemical processes in tropical forest ecosystems, including storing and recycling nutrients and decomposing organic matter. Anthropogenic activities, mainly deforestation on charcoal production, have substantially disrupted these processes, leading to notable changes in microbial activities, enzyme functions, and the availability and soil nutrient status of the derived savannah in southwestern Nigeria. While there is increasing recognition of charcoal's impact on soil properties, there remains a noticeable research gap in understanding its specific effects on some associated soil microbial properties, soil enzymes, and micronutrients in charcoal production sites.
View Article and Find Full Text PDFACS Synth Biol
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
is a promising cell factory to produce various value-added chemicals, including fatty acid derivatives. However, their metabolic engineering development has been hindered by the limited availability of genetic tools. In this study, an accurate and specific gene-editing tool, CRISPR/Cas-based cytidine base editor (CBE) system, was developed for the first time in to broaden its genetic toolbox.
View Article and Find Full Text PDF