98%
921
2 minutes
20
The bacteria's ability to respond to environmental changes is critical for their survival. This allows them to form intricate communities, withstand stress, and initiate virulence responses in hosts during infection, a phenomenon known as phenotypic switching. In this study, we investigated the role of shaking conditions on phenotype switch in multidrug-resistant and pathogenic Morganella morganii both under in vitro and in vivo conditions. The results demonstrate that M. morganii grown in non-shaking conditions, possibly causing low fluid shear, developed floccules or cellular aggregates, and substantially increased biofilm formation. Meanwhile, the bacterium grown in shaking conditions was non-flocculated and produced less biofilm. This phenotype switch leads to a significant change in the protein secretome and multidrug resistance profile. In the non-shaking condition, M. morganii secretes two main proteins of ∼80 and ∼100 kDa and displays multiple antibiotic resistance (MAR) values of 0.39. In contrast, the bacterial cell in a shaking flask secreted one prominent protein of ∼50 kDa and exhibited a lower MAR value of 0.31. These observations correspond with a significant reduction in both in vitro and in vivo virulence of M. morganii grown in non-shaking conditions, namely haemolysin, swimming motility, histomorphological changes, and survival assay as compared to bacterial cells in a shaking flask displayed higher virulence in both in vitro and in vivo condition. Furthermore, non-shaking tube-grown cells have higher expression of saa, astA, ibeA, papC and papG genes as compared to cells grown in the shaking flask exhibiting higher expression of kpsMT K1, kpsMT "K5", stx, ireA and cdt genes. Taking together, the study offers strong evidence supporting the presence of two phenotype forms in the multidrug-resistant and pathogenic M. morganii strain, showing differential phenotypes. Additionally, since water flow and movement are prevalent characteristics in aquaculture systems, they can exert fluid shear on the resident microbial communities. Therefore, our study could serve as a foundation for understanding the behavior of M. morganii in aquaculture settings and enable the possibility of monitoring and controlling this multidrug-resistant and pathogenic bacterium by steering phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2025.107430 | DOI Listing |
BMC Infect Dis
September 2025
Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.
View Article and Find Full Text PDFInt J Food Microbiol
September 2025
Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil. Electronic address:
This study investigated the presence of Pseudomonas aeruginosa and heterotrophic bacteria in 1150 samples of bottled mineral water. P. aeruginosa was initially isolated using membrane filtration on selective agar and subsequently confirmed by PCR.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.
View Article and Find Full Text PDFmBio
September 2025
Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Flanders, Belgium.
Echinocandins, which target the fungal β-1,3-glucan synthase (Fks), are essential for treating invasive fungal infections, yet resistance is increasingly reported. While resistance typically arises through mutations in Fks hotspots, emerging evidence suggests a contributing role of changes in membrane sterol composition due to mutations. Here, we present a clinical case of () in which combined mutations in and , but not alone, appear to confer echinocandin resistance.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
Antibacterial photodynamic therapy offers a promising approach for combating both susceptible and multidrug-resistant pathogens. However, conventional photosensitizers have limitations in terms of poor binding specificity and weak penetration for pathogens. In this study, we developed synergistic photobactericidal polymers that integrate hydrophilic toluidine blue O (TBO) with the lipophilic penetration enhancer citronellol (CT).
View Article and Find Full Text PDF