98%
921
2 minutes
20
Electrocatalysts support crucial industrial processes and emerging decarbonization technologies, but their design is hindered by structural and compositional changes during operation, especially at application-relevant current densities. Here we use operando X-ray spectroscopy and modelling to track, and eventually direct, the reconstruction of iron sulfides and oxides for the oxygen evolution reaction. We show that inappropriate activation protocols lead to uncontrollable Fe oxidation and irreversible catalyst degradation, compromising stability and reliability and precluding predictive design. Based on these, we develop activation programming strategies that, considering the thermodynamics and kinetics of surface reconstruction, offer control over precatalyst oxidation. This enables reliable predictions and the design of active and stable electrocatalysts. In a NiFeS model system, this leads to a threefold improvement in durability after programmed activation, with a cell degradation rate of 0.12 mV h over 550 h (standard operation: 0.29 mV h, constrained to 200 h), in an anion exchange membrane water electrolyser operating at 1 A cm. This work bridges predictive modelling and experimental design, improving the electrocatalyst reliability for industrial water electrolysis and beyond at high current densities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-025-02128-7 | DOI Listing |
J Mol Model
September 2025
Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.
Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.
View Article and Find Full Text PDFInorg Chem
September 2025
Departmento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain.
[Cu(3-bph)(PABA)(HO)] () (3-bph = ,'-bis(3-pyridylmethylene)hydrazine and PABA = -amino benzoate) is a pyridyl-N bridging Cu coordination polymer, and PABA acts as a carboxylate-O donor forming a square pyramidal CuNO motif following a zigzag one-dimensional (1D) lattice. The shows weak antiferromagnetic coupling ( = -0.196(1) cm), and emission appears at 352 nm (λ = 293 nm), which is selectively quenched by Fe via the FRET mechanism.
View Article and Find Full Text PDFEur Radiol
September 2025
Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
Objectives: To evaluate the predictive role of carotid stiffening, quantified using ultrafast pulse wave velocity (ufPWV), for assessing cardiovascular risk in young populations with no or elevated cardiovascular risk factors (CVRFs).
Materials And Methods: This study enrolled 180 young, apparently healthy individuals who underwent ufPWV measurements. They were classified into three groups: the CVRF-free group (n = 60), comprising current non-smokers with untreated blood pressure < 140/90 mmHg, fasting blood glucose (FBG) < 7.
Dalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
Photomultiplication-type organic photodetectors (PM-type OPDs) have recently attracted attention. However, the development of polymer donors specifically tailored for this architecture has rarely been reported. In this study, we synthesized benzobisoxazole-based polymer donors incorporating alkylated π-spacers that simultaneously enhance photocurrent density () and suppress dark current density (), leading to high responsivity () and specific detectivity (*).
View Article and Find Full Text PDF