98%
921
2 minutes
20
Numerous studies have linked reading ability to white matter microstructure using diffusion tensor imaging, but findings have been inconsistent and lack specificity. Fiber-specific diffusion-weighted magnetic resonance imaging (dMRI) models offer enhanced precision in measuring specific microstructural features, but they have not yet been applied to examine associations between reading ability and white matter microstructure development as children learn to read. We applied constrained spherical deconvolution (CSD) and fiber-specific modelling to characterize developmental changes in fiber density of key white matter tracts of the reading network, and investigated associations between tract-wise fiber density and children's phonological decoding abilities. Fiber density was measured from ages 2-13 years, and decoding ability (pseudoword reading) was assessed at ages 6 years and older. Higher decoding ability was associated with greater fiber density in the left arcuate fasciculus, and effects remained consistent over time. Follow-up analysis revealed that asymmetry changes in the arcuate fasciculus were moderated by decoding ability: good decoders showed leftward asymmetry from early childhood onward, while poorer decoders shifted toward leftward asymmetry over time. These results suggest that densely organized fibers in the left arcuate fasciculus serve as a foundation for the development of reading skills from the pre-reading stage through fluent reading.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910681 | PMC |
http://dx.doi.org/10.1016/j.dcn.2025.101537 | DOI Listing |
Nanoscale
September 2025
School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:
Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.
View Article and Find Full Text PDFClin Neurophysiol
August 2025
University of Queensland, Centre for Clinical Research, Herston, QLD, Australia; Royal Brisbane & Women's Hospital, Herston, QLD, Australia. Electronic address:
Objective: High-density surface electromyography (HD-sEMG) is a non-invasive and quantitative tool for studying neuromuscular disorders, enabling assessments of muscle excitation, motor unit (MU) characteristics and firing patterns. This systematic review reports the published evidence on the clinical applications of HD-sEMG across neuromuscular disorders, identifying the range of disorders studied, indexes utilized, and gaps in the literature.
Methods: Systematic searches in PubMed and Scopus identified 200 studies, of which 55 met the inclusion criteria.
J Colloid Interface Sci
September 2025
State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Downsizing Pt particles and incorporating water dissociation site represents a promising strategy for maximizing atomic utilization efficiency and enhancing catalytic performance in Pt-based hydrogen evolution reaction (HER) electrocatalysts. Here, we present a self-supported Pt/Y(OH) electrocatalyst through a synergistic combination of anion insertion-enhanced electrodeposition and chemical deposition at ambient temperature. The resultant architecture features sub-2 nm Pt nanoclusters (with an average diameter of 1.
View Article and Find Full Text PDF