Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Context: This article suggests that the olfaction process can be simplified to an adsorption mechanism by utilizing the Machilis hrabei olfactory receptor MhOR5 as a biological adsorbent. The odorant molecules such as geosmin, linalool, and o-cresol were used as adsorbates. The aim of the present study is to provide new insights into the docking process of the tested odorants on MhOR5 using numerical simulation via an advanced statistical physics model to fit the corresponding response curves.

Methods: In the present work, an advanced theory based on statistical physics formalism is applied to understand and analyze the experimental dose-olfactory response curves of three odorant molecules on the Machilis hrabei olfactory receptor. Indeed, a monolayer model with four energy levels developed using the grand canonical ensemble was successfully applied to analyze the adsorption mechanism of geosmin, linalool, and o-cresol on MhOR5 through the interpretation of the different fitted parameters. Stereographically, it was found that geosmin, linalool, and o-cresol molecules were docked on MhOR5 binding pockets with nonparallel orientations (multi-molecular process) since all the numbers of the studied odorants adsorbed on one binding pocket were superior to 1. Energetically, the values of the molar adsorption energies ΔE (i = 1, 2, 3, and 4) related to the four types of binding pockets (varied between 6.18 and 18.43 kJ/mol) demonstrated that the three odorants were exothermically and physically docked on MhOR5 since all values of ΔE were positive and inferior to 40 kJ/mol. The proposed model may also be applied to calculate and interpret two thermodynamic potentials: the internal energy E and adsorption entropy S. Additionally, the physicochemical parameters may be used to stereographically and energetically characterize the heterogeneity of the insect MhOR5 surface. The docking simulation results demonstrated that the estimated binding affinities or energy score values (varied between 6.27 and 18.40 kJ/mol) were slightly similar to molar adsorption energy values and were included in the adsorption energy bands of the three adsorption energy distributions (AEDs).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-025-06327-6DOI Listing

Publication Analysis

Top Keywords

geosmin linalool
16
linalool o-cresol
16
adsorption mechanism
12
machilis hrabei
12
hrabei olfactory
12
olfactory receptor
12
statistical physics
12
adsorption energy
12
mechanism geosmin
8
receptor mhor5
8

Similar Publications

Context: This article suggests that the olfaction process can be simplified to an adsorption mechanism by utilizing the Machilis hrabei olfactory receptor MhOR5 as a biological adsorbent. The odorant molecules such as geosmin, linalool, and o-cresol were used as adsorbates. The aim of the present study is to provide new insights into the docking process of the tested odorants on MhOR5 using numerical simulation via an advanced statistical physics model to fit the corresponding response curves.

View Article and Find Full Text PDF

The key odorants of tartary buckwheat (TB) were researched by a sensory-directed flavor analysis approach for the first time. After the volatiles of TB were isolated by solvent-assisted flavor evaporation (SAFE), 49 aroma-active components with flavor dilution (FD) factors in the range of 1-2187 were identified using gas chromatography-olfactometry-mass spectrometry (GC-O-MS) combined with aroma extract dilution analysis (AEDA). Geranylacetone, phenethyl alcohol, and β-damascone showed the highest FD factors of 2187.

View Article and Find Full Text PDF

Aims: This study aimed to apply the volatile organic compounds from Streptomyces philanthi RL-1-178 (VOCs RL-1-178) as a fumigant to protect soybean seeds against the two aflatoxin-producing fungi in stored soybean seeds.

Methods And Results: The antifungal bioassay tests on potato dextrose agar (PDA) dishes showed that 30 g l wheat seed inoculum of S. philanthi RL-1-178 exhibited total (100%) inhibition on Aspergillus parasiticus TISTR 3276 and Aspergillus flavus PSRDC-4.

View Article and Find Full Text PDF

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a devastating global pest of berry crops and cherries. Little is understood about its biology during the winter in northern temperate regions, including potential resources that it may utilize during this period. In this study, olfactory and behavioral responses of female D.

View Article and Find Full Text PDF

Volatile organic chemicals of a shore-dwelling cyanobacterial mat community.

J Chem Ecol

February 1994

Department of Entomology, University of Alberta, T6G 2E3, Edmonton, Alberta, Canada.

The main components of a cyanobacterial mat community of a hypersaline lake shore consist of edaphic, mat-forming strains (ecophenes), and littoral strains ofOscillatoria animalis Agardh andO. subbrevis Schmidle, other microorganisms associated with these cyanobacteria, several species ofBembidion (Carabidae: Coleoptera), and two halophytic flowering plants:Puccinellia nuttalliana (salt meadow grass) andSalicornia europaea rubra (samphire). The volatile organic compounds of this community are a blend of those emitted by each of these components such as the C17 alka(e)nes, geosmin, 2-methylisoborneol,β-cyclocitral,β-ionone, dimethyl sulfide, and dimethyl trisulfide of cyanobacteria and associated microorganisms; alcohols, esters, and aldehydes usually associated with flowering plants; and possibly some insect-derived esters, particularly isopropyl tetradecanoate.

View Article and Find Full Text PDF