A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering Iridium Nanoclusters for Boosting Ferroptotic Cell Death by Regulating GPX4 and p53 Functions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emerging evidence indicates that modulating glutathione peroxidase 4 (GPX4) to induce ferroptosis is a promising strategy for tumor treatment. However, most of the GPX4 small molecule inhibitors face limitations due to their poor delivery efficacy and low specificity of ferroptosis activation. Herein, a ferroptosis-inducing nanomedicine is developed that integrates nutlin-3 with iridium oxide nanoclusters (NUT-IrO NCs) for enhanced ferroptosis-driven multimodal therapeutic efficacy in colorectal cancer (CRC). This NUT-IrO NCs can induce glutathione (GSH) depletion via enhanced Ir (VI)-Ir (III) transition, while nutlin-3, a well-established inhibitor of the p53-MDM2 interaction, suppresses GSH production by modulation of the p53/SLC7A11/xCT signaling pathway. The reduction of intracellular GSH results in pronounced reductions of GPX4 enzymatic activity, consequently leading to lipid peroxidation accumulation and further enhancing ferroptosis-induced CRC therapy. This dual-pronged approach demonstrates robust anticancer therapeutic effects with favorable biocompatibility in both in vitro and in vivo CRC models. This study provides an effective strategy that highlights the benefits of inhibiting of GSH/GPX4 by activating multiple ferroptosis regulatory pathways, providing an alternative therapeutic avenue for CRC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202404895DOI Listing

Publication Analysis

Top Keywords

nut-iro ncs
8
engineering iridium
4
iridium nanoclusters
4
nanoclusters boosting
4
boosting ferroptotic
4
ferroptotic cell
4
cell death
4
death regulating
4
gpx4
4
regulating gpx4
4

Similar Publications