Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Crystal structure prediction (CSP) is an evolving field aimed at discerning crystal structures with minimal prior information. Despite the success of various CSP algorithms, their practical applicability remains circumscribed, particularly for large and complex systems. Here, to address this challenge, we show an evolutionary structure generator within the MAGUS (Machine Learning and Graph Theory Assisted Universal Structure Searcher) framework, inspired by the symmetry principle. This generator extracts both global and local features of explored crystal structures using group and graph theory. By integrating an on-the-fly space group miner and fragment reorganizer, augmented by symmetry-kept mutation, our approach generates higher-quality initial structures, reducing the computational costs of CSP tasks. Benchmarking tests show up to fourfold performance improvements. The method also proves valid in complex phosphorus allotrope systems. Furthermore, we apply our approach to the diamond-silicon (111)-(7 × 7) surface system, identifying up to 42 metastable structures within an 18 meV Å energy range, demonstrating the efficacy of our approach in navigating challenging search spaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s43588-025-00775-z | DOI Listing |