98%
921
2 minutes
20
Accurately predicting the remaining useful life (RUL) of complex equipment plays a vital role in maintaining modern manufacturing systems' operational safety and reliability. This challenge has attracted considerable interest within the domain of intelligent operation and maintenance. However, the lack of high-quality, comprehensive lifecycle data in industrial environments is a major barrier to developing and deploying intelligent RUL prediction algorithms. Digital twin technology offers a novel solution by utilizing virtual resources to provide insights into the operation and maintenance of physical entities, thus addressing the issue of data insufficiency. This study presents an innovative lifecycle digital twin model and RUL prediction framework, based on operational CycleGAN with multiple virtual-physical mappings. First, a six-degree-of-freedom dynamic model of the bearing is developed as a digital representation. Subsequently, the mapping relationships between measured signals and bearing parameters are explored. The KAN mapping network is employed to forecast the evolutionary patterns of bearing parameters, enabling the construction of a full-lifecycle dynamic model. A self-organized neural operator is then integrated into the CycleGAN network to enable iterative updates and corrections of twin signals. This is achieved through the interaction of fault and environmental information across virtual and physical domains. Experimental results demonstrate that the generated lifecycle twin data exhibit a high degree of similarity and consistency with measured data distributions. The proposed method is compatible with advanced RUL prediction models, allowing accurate predictions even with limited lifecycle data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976569 | PMC |
http://dx.doi.org/10.1016/j.jare.2025.02.029 | DOI Listing |
Sci Rep
September 2025
Henan Xj Metering Co., Ltd, Xuchang, 461000, Henan, China.
The precise estimation of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for averting unforeseen failures and enhancing operational efficiency and maintenance planning. This paper presents an advanced deep learning framework that couples a spatial-attention mechanism with a Transductive Long Short-Term Memory (TLSTM) model, augmented by one-dimensional dilated convolutional layers to capture long-range temporal dependencies. In contrast to traditional LSTM or GRU models, our methodology utilizes one-dimensional dilated convolutional layers to effectively capture long-range temporal relationships and implements a clustering-based Differential Evolution (DE) strategy for resilient weight initialization and optimization.
View Article and Find Full Text PDFSensors (Basel)
August 2025
School of Physics, Liaoning University, Chongshan Campus, Shenyang 110031, China.
Etching has become a critical step in semiconductor wafer fabrication, and its importance in semiconductor manufacturing highlights the fact that it directly determines the ability of the fab to produce high-process products, as well as the application performance of the chip. While the health of the etcher is a concern, especially for the cooling system, accurately predicting the remaining useful life (RUL) of the etcher cooling system is a critical task. Predictive maintenance (PDM) can be used to monitor the basic condition of the equipment by learning from historical data, and it can help solve the task of RUL prediction.
View Article and Find Full Text PDFSensors (Basel)
August 2025
The Department of Power Engineering and Computer Science, Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 600115 Bacau, Romania.
Unmanned Aerial Vehicles have started to be used more and more due to the benefits they bring. Failure of Unmanned Aerial Vehicle components may result in loss of control, which may cause property damage or personal injury. In order to increase the operational safety of the Unmanned Aerial Vehicle, the implementation of a Predictive Maintenance system using the Internet of Things is required.
View Article and Find Full Text PDFSensors (Basel)
July 2025
Sustainable Infrastructure and Resource Management (SIRM), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
In recent years, domain adaptation (DA) has been extensively applied to predicting the remaining useful life (RUL) of bearings across conditions. Although traditional DA-based methods have achieved accurate predictions, most methods fail to extract multi-scale degradation information, focus only on global-scale DA, and ignore the importance of temporal weights. These limitations hinder further improvements in prediction accuracy.
View Article and Find Full Text PDFSensors (Basel)
July 2025
Zhijian Laboratory, Rocket Force University of Engineering, Xi'an 710025, China.
With the deepening of degradation, the stability and reliability of the degrading system usually becomes poor, which may lead to random jumps occurring in the degradation path. A non-homogeneous jump diffusion process model is introduced to more accurately capture this type of degradation. In this paper, the proposed degradation model is translated into a state-space model, and then the Monte Carlo simulation of the state dynamic model based on particle filtering is employed for predicting the degradation evolution and estimating the remaining useful life (RUL).
View Article and Find Full Text PDF