98%
921
2 minutes
20
Background: In patients with hypoxic-ischemic encephalopathy (HIE), EEG is used to predict outcomes. However, a clear threshold for EEG findings associated with favorable outcomes remains unestablished. This study evaluates the predictive value of density spectral array (DSA)-based background activity in HIE patients.
Methods: Forty-four consecutive HIE patients with disturbance of consciousness (2010-2023) were retrospectively assessed and categorized into highly malignant, malignant, or benign EEG patterns according to the conventional EEG classification. The presence of alpha-band activity, defined as an increase in alpha (or theta) frequency band power visible in the DSA, was also assessed. The relationship among conventional EEG classification, alpha-band activity, and neurological outcomes was evaluated.
Results: All patients with highly malignant EEG lacked alpha-band activity and experienced poor outcomes, whereas those with less severe patterns occasionally exhibited alpha-band activity (14 % in the malignant vs. 60 % in the benign, p = 0.021), and demonstrated various outcomes. Recovery of consciousness until discharge was more prominent in patients with alpha-band activity compared to those without (100 % vs. 39 %, p < 0.001).
Conclusions: DSA-based evaluations provide a simple and valuable tool for predicting favorable neurological outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clineuro.2025.108791 | DOI Listing |
J Neurophysiol
September 2025
Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307 Dresden, Germany.
Cognitive control - the ability to regulate information processing in line with current goals - is essential for cognitive functioning. We examined whether uncertainty in cognitive control demands leads to higher processing of cues that reduce uncertainty. Participants completed a Go/NoGo task with two NoGo:Go ratios (4:5 and 1:6).
View Article and Find Full Text PDFExp Brain Res
September 2025
Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.
Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.
View Article and Find Full Text PDFTrends Hear
September 2025
Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
Understanding speech in noise is a common challenge for older adults, often requiring increased listening effort that can deplete cognitive resources and impair higher-order functions. Hearing aids are the gold standard intervention for hearing loss, but cost and accessibility barriers have driven interest in alternatives such as Personal Sound Amplification Products (PSAPs). While PSAPs are not medical devices, they may help reduce listening effort in certain contexts, though supporting evidence remains limited.
View Article and Find Full Text PDFHum Mov Sci
August 2025
Department of Rehabilitation, Hiroshima International University, Hiroshima, Japan. Electronic address:
Objective: Previous studies have demonstrated that the cerebral cortex is involved in the postural responses to static standing and disturbances. However, the role of the cortex in postural stabilization remains unclear. This study aimed to clarify cortical activity during postural stabilization.
View Article and Find Full Text PDFMov Disord Clin Pract
August 2025
Department of Neurology, Mount Sinai West, New York, New York, USA.
Background: Dystonia affects an estimated 30% of patients with Parkinson's Disease (PD). While pallidal theta-alpha oscillations (4-10 Hz) have been found to characterize primary dystonia compared to beta oscillations (12-30 Hz) in PD, the electrophysiology underlying dystonia in PD remains unexplored.
Objectives: Explore the electrophysiology underlying dystonia in PD.