Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents the synthesis of a novel trimetallic ZnCuCr-TpIm metal-organic framework (MOF) via a solvothermal method, yielding cubic crystals of 300-500 nm. The integration of Zn, Cu, and Cr metal centers enhances the MOF's adsorption efficiency and structural stability, distinguishing it from conventional MOFs. The material achieves a high Congo red dye removal efficiency (96.5%) under optimal conditions: 40 mg adsorbent dosage, 55 °C, pH 6-7, and a 60 min contact time. Kinetic analysis reveals that the adsorption follows a pseudo-second-order model ( > 0.999), indicating chemisorption as the rate-limiting step, while equilibrium data align with the Langmuir isotherm model ( = 0.998), confirming a maximum adsorption capacity of 325 mg/g. FTIR and XRD analyses confirm strong interactions between the dye molecules and the MOF framework while preserving its crystalline structure. The ZnCuCr-TpIm MOF demonstrated exceptional stability, retaining 95% of its surface area after 72 h and maintaining over 90% adsorption efficiency after five reuse cycles, with minimal metal ion leaching (<1.2 ppm). The material also exhibited high resilience under varying pH, salinity, and simulated wastewater conditions, underscoring its potential for long-term and sustainable dye removal applications. These findings highlight the synergistic advantages of the trimetallic MOF, making it a promising candidate for efficient and stable wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c04661DOI Listing

Publication Analysis

Top Keywords

congo red
8
red dye
8
adsorption efficiency
8
adsorption
5
optimized congo
4
dye adsorption
4
adsorption zncucr-based
4
mof
4
zncucr-based mof
4
mof sustainable
4

Similar Publications

Amyloidosis is caused by the extracellular deposition of amyloid fibrils with a β-pleated sheet structure. Diagnosis typically relies on Congo red or Thioflavine T staining. Recently, DAPI (4',6-Diamidino-2-Phenylindole), which is a common nuclear fluorochrome, has been reported to stain amyloid.

View Article and Find Full Text PDF

Monoclonal gammopathy-associated myopathies (MGAMs) are rare yet treatable myopathies that occur in association with monoclonal gammopathies. These myopathies include light chain (AL) amyloidosis myopathy, sporadic late-onset nemaline myopathy (SLONM), scleromyxedema with associated myopathy, and newly reported monoclonal gammopathy-associated glycogen storage myopathy (MGGSM), including the vacuolar myopathy with monoclonal gammopathy and stiffness. All these 4 distinct subtypes of MGAMs typically present in patients aged 40 or older, frequently with a subacute onset of rapidly progressive proximal and axial muscle weakness.

View Article and Find Full Text PDF

The structural role of β-1,6-glucan has remained under-investigated in filamentous fungi compared to other fungal cell wall polymers, and previous studies have shown that the cell wall of the mycelium of did not contain β-1,6-glucans. In contrast, the current solid-state NMR investigations showed that the conidial cell wall contained a low amount of β-1,6-glucan. ssNMR comparisons of the and β-1,6-glucans showed they are structurally similar.

View Article and Find Full Text PDF

In this study, a novel hybrid hydrogel incorporating a scandium-based metal-organic framework (scandium-integrated MOF-hydrogel hybrid) was developed using scandium nitrate, 1,4-naphthalenedicarboxylic acid, oxidized pectin, and chitosan. The synthesized scandium-integrated MOF-hydrogel hybrid demonstrated remarkable dual-functionality in both the adsorption of hazardous dye pollutants and the inhibition of pathogenic bacteria commonly found in wastewater. Characterization of the scandium-integrated MOF-hydrogel hybrid was performed using FT-IR, XRD, SEM, EDAX, CHNO elemental, BET, and XPS analyses, confirming successful MOF integration and a porous, reactive surface.

View Article and Find Full Text PDF

Tobacco brown spot disease (TBSD), is a severe leaf disease caused by Alternaria alternata, and its management heavily relies on dicarboximide fungicides. This study analyzed procymidone, a dicarboximide fungicide, resistance in 96 strains of A. alternata isolated from tobacco in Guizhou Province.

View Article and Find Full Text PDF