Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The p53, often referred to as the "guardian of the genome", is a well-established tumor-suppressor protein that plays a critical role in regulating the cell cycle, DNA repair, differentiation, and apoptosis, with its activity primarily modulated by the MDM2 protein (murine double minute 2, also known as HDM2 in humans). Disrupting the protein-protein interaction between p53 and MDM2 represents a promising therapeutic strategy for developing anticancer agents. Recent studies have shown that several spirooxindole-containing compounds exhibit significant antitumor properties, primarily by inhibiting the p53-MDM2 interaction. This review provides an overview of structure-based spirooxindoles that could have therapeutic potential. It highlights findings from the past decade concerning their antiproliferative properties and implications for interfering with the p53-MDM2 interaction. The discussion includes various analogs of spirooxindoles as promising candidates for optimizing leads in drug discovery programs aimed at developing novel and clinically effective agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859340PMC
http://dx.doi.org/10.3390/ph18020274DOI Listing

Publication Analysis

Top Keywords

therapeutic potential
8
p53-mdm2 interaction
8
potential spirooxindoles
4
spirooxindoles cancer
4
cancer focus
4
focus p53-mdm2
4
p53-mdm2 modulation
4
modulation p53
4
p53 referred
4
referred "guardian
4

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF