Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cytokines IFN-γ and CD154 have been well established, and they play pivotal roles in immune protection against in mice, but their effects and specific mechanisms in -infected chickens are less understood. In this study, we conducted animal experiments to screen the highly immunoprotective chIFN-γ-chCD154 fusion protein compared with single protein chIFN-γ or chCD154 in white Leghorn chickens. The results showed that compared with separate pretreatments with chIFN-γ and chCD154, the fusion protein, chIFN-γ-chCD154, synergistically increased survival of infected chickens, reduced bacterial load in feces and organs, and attenuated pathological damage to the liver and cecum. Pretreatment with chIFN-γ-chCD154 also increased humoral immune responses, expression of the tight junction proteins zo-1, occludin, and claudin-1, and the relative abundance of , , and , which protect against intestinal inflammation. Compared with single protein pretreatment, chIFN-γ-chCD154 significantly upregulated STAT1, IRF1, and GBP1 in infected chickens while decreasing mRNA expression of TLR4, MyD88, NF-κB, TNF-α, IL-6, and IL-1β. In summary, damage to the cecal epithelial barrier and the inflammation induced by infection was alleviated by chIFN-γ-chCD154 pretreatment through a mechanism involving the TLR4/MyD88/NF-κB and IFN-γ/STAT/IRF1/GBP1 pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861687PMC
http://dx.doi.org/10.3390/vetsci12020112DOI Listing

Publication Analysis

Top Keywords

fusion protein
12
ifn-γ cd154
8
compared single
8
single protein
8
chifn-γ chcd154
8
infected chickens
8
pretreatment chifn-γ-chcd154
8
protein
5
chifn-γ-chcd154
5
administration recombinant
4

Similar Publications

A rapid imaging-based screen for induced-proximity degraders identifies a potent degrader of oncoprotein SKP2.

Nat Biotechnol

September 2025

Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.

Targeted protein degraders hold potential as therapeutic agents to target conventionally 'undruggable' proteins. Here, we develop a high-throughput screen, DEath FUSion Escaper (DEFUSE), to identify small-molecule protein degraders. By conjugating the protein of interest to a fast-acting triggerable death protein, this approach translates target protein degradation into a cell survival phenotype to illustrate the presence of degraders.

View Article and Find Full Text PDF

At present there is no metabolic characterization of acute promyelocytic leukemia (APL). Pathognomonic of APL, PML::RARα fusion protein rewires metabolic pathways to feed anabolic tumor cell's growth. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO)-based therapies render APL the most curable subtype of AML, yet approximately 1% of cases are resistant and 5% relapse.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.

View Article and Find Full Text PDF

Objective: Therapeutic potential of selective aggrecanase inhibition in osteoarthritis (OA) was previously demonstrated using a variant of endogenous tissue inhibitor of metalloproteinase-3 (TIMP-3); however, this relied on transgenic mice overexpressing TIMP-3. Here, we develop a translational approach for harnessing the aggrecanase-selective inhibitory activity of TIMP-3 using the latency associated peptide (LAP) technology.

Methods: We successfully produced and purified recombinant LAP-TIMP-3 fusion proteins and determined the pharmacokinetics of these proteins in vivo following systemic injection.

View Article and Find Full Text PDF

Immunogenicity and protection against infectious bursal disease via a transgenic Eimeria acervulina expressing IBDV VP2-2C3d fusion protein.

Vaccine

September 2025

State Key Laboratory of Veterinary Public Health and Safety; Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China. Electronic address:

Infectious bursal disease (IBD), caused by the infectious bursal disease virus (IBDV), significantly threatens global poultry health by inducing immunosuppression and causing economic losses. To enhance vaccination efficacy, we engineered a transgenic strain of Eimeria acervulina (Ea-2C3d) expressing a fusion protein composed of IBDV VP2 and three tandem C3d segments (3C3d), utilizing C3d's adjuvant properties to boost immune responses. The transgene was generated by integrating codon-optimized VP2 and 3C3d sequences into the E.

View Article and Find Full Text PDF