Transcriptional Regulatory Network of the Embryonic Diapause Termination Process in .

Genes (Basel)

Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a typical animal used for the study of the diapause mechanism. The research on the regulation mechanism of diapause mainly focuses on the occurrence and maintenance of diapause. There are few studies on the mechanism of embryonic pause termination (EDT), especially for its transcriptional regulation mechanism. This study integrated transcriptional regulatory data from ATAC-seq and gene expression data from RNA-seq to explore the transcriptional regulatory mechanisms involved in the EDT process. Through integrated analysis, four important transcription factors (TFs), SVP, MYC, RXR, and SMAD6, were found to play a role in the EDT process, in which SVP, MYC, and RXR were upregulated, while SMAD6 was downregulated in the EDT stage. Through co-expression analysis, a transcription regulatory network for these four TFs was constructed and the functions of the TFs were analyzed. The expression of the TFs was further verified by RT-qPCR. Through functional analysis, SVP was found to be predominantly involved in cell adhesion and signal transduction. MYC probably played a role in protein binding. RXR may function in the process of RNA binding and the transfer of phosphorus-containing groups. Smad6 regulated the signal transduction, cell adhesion, and oxidation-reduction processes. The expression of the key TFs was verified by RT-qPCR. The results of this work provide important clues for the mechanism of transcriptional regulation in the EDT process of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855619PMC
http://dx.doi.org/10.3390/genes16020175DOI Listing

Publication Analysis

Top Keywords

transcriptional regulatory
12
edt process
12
regulatory network
8
regulation mechanism
8
transcriptional regulation
8
analysis transcription
8
svp myc
8
myc rxr
8
tfs verified
8
verified rt-qpcr
8

Similar Publications

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.

View Article and Find Full Text PDF

The advantage of periodic over constant signalling in microRNA-mediated regulation.

Nucleic Acids Res

September 2025

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Cells may exploit oscillatory gene expression to encode biological information. Temporal features of oscillations, such as pulse frequency and amplitude, are determinant for the outcome of signalling pathways. However, little effort has been devoted to unveiling the role of pulsatility in the context of post-transcriptional gene regulation, where microRNAs act by binding to RNAs and regulate their expression.

View Article and Find Full Text PDF

Abscisic Acid and Calcium Signals Convergently Regulate Sugar Accumulation by Orchestrating the SRK2A/CIPK6-ABI5-TST2 Module in Citrus.

Plant Biotechnol J

September 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.

Abscisic acid (ABA) and calcium respectively work as crucial plant hormones and second signalling molecules in the regulation of fruit development and quality formation, including the sugar content and flavour quality. However, the regulatory mechanisms of fruit sugar accumulation arising from the interaction between ABA and calcium have not yet been fully elucidated. Here, we show that the application of ABA or calcium enhances sugar accumulation in sweet orange (Citrus sinensis) fruit, accompanied by upregulation of the expression level of tonoplast sugar transporter 2 (CsTST2), which mediates the transport of sugars into the vacuole.

View Article and Find Full Text PDF