98%
921
2 minutes
20
Indoor direct shear tests under different stress levels were conducted on sandstone-concrete samples to investigate the rock-concrete interfaces' shear energy evolution features and fracture behaviors under different normal stresses, combined with acoustic emission (AE) and digital image correlation (DIC) techniques. The research results show that the growth of normal stress restricts the coalescence and failure of micro-cracks inside the sample and improves the bearing capacity. The shear strength of the sandstone-concrete cemented interface increases by 12.3-34.34% with increasing normal stress. The evolution behaviors of the total input energy, elastic strain energy and dissipated energy density are similar under different normal stress conditions, and the increase in normal stress raises the energy storage capacity of the sample, as well as the input external energy required for a sample's failure, thereby enhancing the bearing capability of the sample. In addition, the AE count and value characteristics indicate that crack propagation shows a three-stage variation trend. It can be seen from the RA (rise time/amplitude)-AF (AE count/duration time) curves that as the normal stress increases, the proportion of shear cracks in the sample progressively increases. When the final overall failure of the sample is imminent, the high-energy level fracture type changes from tensile fracture to shear fracture with increased normal stress, leading to an increasing percentage of shear fracture. Finally, the speckle results indicate that the nucleation and coalescence of tensile wing-shaped cracks are the main causes of sample failure. Under relatively high normal stress conditions, the damage degree of the serrated interface increases and the crack morphology becomes more intricate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857143 | PMC |
http://dx.doi.org/10.3390/ma18040795 | DOI Listing |
Genetics
September 2025
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.
View Article and Find Full Text PDFClin Orthop Relat Res
August 2025
Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA.
Background: Choosing the appropriate implants for reconstruction in revision TKA is essential for long-term fixation. While cones and augments are routinely utilized to address tibial defects, the effect of augment location and size on the biomechanical stability of revision TKA constructs and the indications for the use of metaphyseal cones are not known.
Questions/purposes: Is the risk of cement-implant debonding of revision TKA constructs impacted by the thickness and location (medial versus bicompartmental) of tibial augments and the presence of metaphyseal cones during (1) a demanding daily activity like stair ascent and (2) torsional loads?
Methods: Under institutional review board approval, we developed patient-specific finite-element models of revision TKA from four patients (three males and one female, ages 50 to 80 years, BMI 27 to 37 kg/m2) who underwent two-stage revision and had a CT scan with no metal artifact after first-stage implant removal.
Clin Orthop Relat Res
September 2025
Department of Neurosurgery, Leiden University Medical Centre, Leiden, The Netherlands.
Background: Lumbar spinal stenosis (LSS) is common in adults with achondroplasia and predisposes individuals to neurogenic claudication. It remains unverified whether the severity of stenosis in patients with achondroplasia is associated with clinical outcomes. Similarly, the role of sagittal balance parameters in clinical outcomes has not been determined.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pathology, Boston Children's Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America.
The Sudden Infant Death Syndrome (SIDS) is a major global health problem, with increased risk among socioeconomically disadvantaged populations. We propose SIDS, or a subset, is due to a defect in the brainstem serotonin system mediating cardiorespiratory integration and arousal. This defect impinges on homeostasis during a critical developmental period in infancy, especially in populations experiencing maternal and infantile stress, resulting in sleep-related sudden death.
View Article and Find Full Text PDFPhytopathology
September 2025
Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Xinong Road #22, Yangling, Shaanxi, China, 712100.
head blight (FHB), caused by the FHB species complex, is one of the most damaging diseases affecting wheat. Accurately predicting FHB occurrence prior to infection is crucial for preventing outbreaks, minimizing crop losses, and reducing the risks of mycotoxins entering the food chain. This study utilized 55 years of historical weather data and the level of primary inoculum in crop debris to predict FHB severity.
View Article and Find Full Text PDF