98%
921
2 minutes
20
Photon-counting detector computed tomography (PCD-CT) represents a significant advancement in radiological imaging, offering substantial potential for cardiac applications that remain partially underexplored. This bibliometric analysis investigates the evolution and current clinical application of cardiac PCD-CT by examining research trends from 2019 to 2024. The analysis aims to understand the development of this technology, its clinical implications, and future directions. A comprehensive literature search was conducted using databases such as PubMed, EMBASE, Scopus, and Google Scholar, yielding 984 records. After removing duplicates and applying inclusion criteria, 81 studies were included in the final analysis. These studies primarily focused on coronary artery calcium scoring, coronary atherosclerotic plaque assessment, and coronary artery stenosis quantification. The findings indicate a significant upward trend in the number of publications, peaking in 2023. The bibliometric analysis revealed that the USA, Germany, and Switzerland are the leading contributors to PCD-CT research, with prominent institutions like the Mayo Clinic and the University of Zurich driving advancements in the field. The NAEOTOM Alpha by Siemens Healthineers, being the only commercially available PCD-CT model, highlights its central role in cardiac imaging studies. Funding for PCD-CT research came from various sources, including industry leaders like Siemens and Bayer, as well as governmental and academic institutions. The analysis also identified several challenges that PCD-CT research faces, including the need for larger patient cohorts and broader geographical representation. In conclusion, the rapid growth of cardiac PCD-CT research underscores its transformative potential in clinical practice. Continued investment, collaboration, and extensive research are essential to fully harness the benefits of PCD-CT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854247 | PMC |
http://dx.doi.org/10.3390/diagnostics15040504 | DOI Listing |
Tissue Eng Regen Med
September 2025
Department of Joint and Sports Medicine, Chaoyang Central Hospital, Chaoyang City, Liaoning Province, China.
Background: Osteoarthritis (OA) represents a major global health challenge with no ideal treatment options available. Early-stage treatment typically focuses on symptomatic relief of pain and stiffness; while late-stage patients can only opt for surgical interventions such as joint replacement to improve quality of life. Cell-free therapy based on extracellular vesicles (EVs) has offered a novel therapeutic approach for regulating bone metabolism and repairing cartilage, demonstrating emerging potential.
View Article and Find Full Text PDFMed Acupunct
August 2025
Kampo Clinical Center, Hiroshima University Hospital, Hiroshima, Japan.
Background: Acupuncture and moxibustion (AM) are effective for pain relief and chronic disease management but carry risks of adverse events (AEs). Japan prioritizes AM safety, and Hiroshima University Hospital Kampo Clinical Center (HUHKCC) follows strict professional standards to ensure both safety and efficacy.
Objectives: The study analyzes AM-related AEs in Japan over the past decade, compares them with HUHKCC practices, and proposes risk mitigation strategies.
J Multidiscip Healthc
September 2025
Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
Background: Falls are a major cause of injury and death among the elderly, highlighting the need for effective and real-time detection systems. Embedded Internet of Health Things (IoHT) technologies integrating sensors, microcontrollers, and communication modules offer continuous monitoring and rapid response. However, the research landscape remains fragmented, and no comprehensive bibliometric review has been conducted.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDF