Modulation of Autophagy by Oncosuppressor FAM46C and Its Implications for Cancer Therapy: An Intriguing Perspective.

Biomolecules

INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer is one of the major challenges in medicine, necessitating continuous advancements in therapeutic approaches. Autophagy, an intracellular pathway essential for cellular homeostasis and stress response, has emerged as a promising target for cancer treatment. In this context, FAM46C, a novel pan-cancer tumour suppressor, has been shown to induce apoptosis in multiple myeloma cells through indirect inhibition of autophagy. Here, we discuss how FAM46C-induced autophagic dampening could offer new opportunities for global cancer therapy. Specifically, we explore two scenarios in which the expression of a functional FAM46C may either sensitize cancer cells to autophagic inhibition or antagonize their sensitivity. We further comment on how this synergism/antagonism could be used to refine strategies for cancer treatment, positioning FAM46C as a pivotal factor in future cancer therapy development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853733PMC
http://dx.doi.org/10.3390/biom15020196DOI Listing

Publication Analysis

Top Keywords

cancer therapy
12
cancer treatment
8
cancer
7
modulation autophagy
4
autophagy oncosuppressor
4
fam46c
4
oncosuppressor fam46c
4
fam46c implications
4
implications cancer
4
therapy intriguing
4

Similar Publications

Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.

View Article and Find Full Text PDF

Background: With the advancement of MR-based imaging, prostate cancer ablative therapies have seen increased interest to reduce complications of prostate cancer treatment. Although less invasive, they do carry procedural risks, including rectal injury. To date, the medicolegal aspects of ablative therapy remain underexplored.

View Article and Find Full Text PDF

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.

View Article and Find Full Text PDF