A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mechanisms of action and adaptive responses to diclofenac and meloxicam during the early life stages of Oryzias melastigma. | LitMetric

Mechanisms of action and adaptive responses to diclofenac and meloxicam during the early life stages of Oryzias melastigma.

Sci Total Environ

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; NJTECH Environment Technology Co., Ltd, Nanjing 210000, China. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs), though designed to target specific molecular pathways, pose significant environmental risks to non-target organisms, particularly marine fish. This study investigated the toxicity mechanisms and adaptive responses to diclofenac (DCF) and meloxicam (MEX) during the early life stages (ELS) of Oryzias melastigma at environmentally relevant concentrations over a 31-day period. Mechanistic investigations of sub-lethal effects were conducted using Enzyme-Linked Immunosorbent Assay (ELISA), RNA sequencing (RNA-Seq) and quantitative PCR (qPCR). The results revealed that cyclooxygenase (COX) inhibition disrupted the renin-angiotensin system, leading to an accumulation of angiotensin II and cardiovascular developmental defects. Additionally, downregulation of the pla2 gene reduced substrates essential for COX enzyme activity, exacerbating the effects. Although NSAIDs are known to affect the digestive system, no significant effects on developmental factors were observed. RNA-Seq and qPCR analyses revealed an adaptive upregulation of key genes, including ace2 and cyp7a1, involved in cardiovascular and metabolic regulation. Furthermore, 16S rRNA sequencing identified shifts in the microbial community, particularly in g_Rubritalea and g_Sphingomonas genera. Both the upregulated genes and the altered microbial taxa likely played a role in mitigating toxic effects and promoting homeostasis. Moreover, molecular docking suggested that MEX exhibited stronger sub-lethal effects than DCF, likely due to its higher binding affinity to COX. These findings provide valuable insights into NSAID toxicity mechanisms in marine fish, highlighting the importance of adaptive responses in countering environmental stress and underscoring the long-term ecological risks of chronic NSAID exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.178927DOI Listing

Publication Analysis

Top Keywords

adaptive responses
12
responses diclofenac
8
early life
8
life stages
8
oryzias melastigma
8
marine fish
8
toxicity mechanisms
8
sub-lethal effects
8
effects
5
mechanisms action
4

Similar Publications