Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Numerous Transformer-based trackers have emerged due to the powerful global modeling capabilities of the Transformer. Nevertheless, the Transformer is a low-pass filter with insufficient capacity to extract high-frequency features of the target and these features are essential for target location in tracking tasks. To address this issue, this paper proposes a tracking algorithm that utilizes hybrid frequency features, which explores how to improve the performance of the tracker by fusing target multi-frequency features. Specifically, a novel feature extraction network is designed that uses CNN and Transformer to learn the multi-frequency features of the target in stages, taking advantage of both structures and balancing high- and low-frequency information. Secondly, a dual-branch encoder is designed to allow the tracker to capture global information while learning the local features of the target through another branch. Finally, a multi-frequency features fusion network is designed that uses wavelet transform and convolution to fuse high-frequency and low-frequency features. Extensive experimental results demonstrate that our tracker achieves superior tracking performance on six challenging benchmark datasets (i.e., LaSOT, TrackingNet, GOT-10k, TNL2K, UAV123, and OTB100).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2025.107269 | DOI Listing |