A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

4D Biofabrication of Magnetically Augmented Callus Assembloid Implants Enables Rapid Endochondral Ossification via Activation of Mechanosensitive Pathways. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of magnetic-driven strategies for non-contact manipulation of engineered living modules opens up new possibilities for tissue engineering. The integration of magnetic nanoparticles (MNPs) with cartilaginous microtissues enables model-driven 4D bottom-up biofabrication of remotely actuated assembloids, providing unique properties to mechanoresponsive tissues, particularly skeletal constructs. However, for clinical use, the long-term effects of magnetic stimulation on phenotype and in vivo functionality need further exploration. Magnetic-driven biofabrication includes both rapid processes, such as guided microtissue assembly, and slower biological processes, like extracellular matrix secretion. This work explores the interplay between magnetic fields and MNP-loaded cartilaginous microtissues through mathematical modeling and experimental approaches, investigating long-term stimulation effects on ECM maturation and chondrogenic hypertrophy. Transcriptomic analysis reveal that magnetic stimulation activated mechanosensitive pathways and catabolic processes, driving accelerated cartilage-to-bone transitions via endochondral ossification, outcomes not observed in non-stimulated controls. This study paves the way for pre-programmed, remotely actuated skeletal assembloids with superior bone-forming capacity for regenerating challenging bone fractures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005758PMC
http://dx.doi.org/10.1002/advs.202413680DOI Listing

Publication Analysis

Top Keywords

endochondral ossification
8
mechanosensitive pathways
8
cartilaginous microtissues
8
remotely actuated
8
magnetic stimulation
8
biofabrication magnetically
4
magnetically augmented
4
augmented callus
4
callus assembloid
4
assembloid implants
4

Similar Publications