98%
921
2 minutes
20
Hakea laurina, a woody Proteaceae, naturally occurs in severely phosphorus (P)-impoverished habitats in southwest Australia. It develops distinctive cluster roots that exhibit a high capacity for carboxylate exudation and acid phosphatase activity, contributing to its P acquisition. However, the molecular mechanisms underlying these physiological functions remain poorly understood. We explored the cluster-root transcriptome using de novo RNA-Seq and identified Hakea laurina Aluminum-activated Malate Transporter 1 (HalALMT1), encoding an aluminum (Al)-activated malate transporter induced in mature cluster roots. We characterized HalALMT1 through electrophysiological assays and overexpression in Arabidopsis thaliana, and localized HalALMT1 expression, acid phosphatase activity, and suberized boundaries in cluster roots. Differentially expressed genes highlighted multiple increased carboxylate-related processes at cluster-root maturity. HalALMT1 released malate, an activity further enhanced by exposure to Al. Notably, HalALMT1 was specifically expressed in mature cortex cells of cluster rootlets, which lack a suberized exodermis. Acid phosphatase activity was pronounced throughout the cluster rootlets, unlike in noncluster roots where it was limited to the epidermis and stele. Substantial malate release and acid phosphatase activity in the cortex cells in cluster rootlets, which lack a suberized exodermis, allowed massive exudation. This study sheds light on an exquisite P-acquisition strategy of Proteaceae, enabling survival under extremely low P availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095975 | PMC |
http://dx.doi.org/10.1111/nph.70010 | DOI Listing |
Imaging Neurosci (Camb)
August 2025
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.
Spinal cord functional MRI studies require precise localization of spinal levels for reliable voxel-wise group analyses. Traditional template-based registration of the spinal cord uses intervertebral discs for alignment. However, substantial anatomical variability across individuals exists between vertebral and spinal levels.
View Article and Find Full Text PDFNew Phytol
June 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
Hakea laurina, a woody Proteaceae, naturally occurs in severely phosphorus (P)-impoverished habitats in southwest Australia. It develops distinctive cluster roots that exhibit a high capacity for carboxylate exudation and acid phosphatase activity, contributing to its P acquisition. However, the molecular mechanisms underlying these physiological functions remain poorly understood.
View Article and Find Full Text PDFPlant Physiol
December 2024
Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China.
Under phosphorus (P) deficiency, white lupin (Lupinus albus L.) forms a specialized root structure, called cluster root (CR), to improve soil exploration and nutrient acquisition. Sugar signaling is thought to play a vital role in the development of CR.
View Article and Find Full Text PDFPlant Cell Environ
April 2024
Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany.
White lupin (lupinus albus L.) forms special bottlebrush-like root structures called cluster roots (CR) when phosphorus is low, to remobilise sparingly soluble phosphates in the soil. The molecular mechanisms that control the CR formation remain unknown.
View Article and Find Full Text PDFEnviron Pollut
November 2023
CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China. Electronic address:
Heavy metal(loid)-contaminated available arable land seriously affects crop development and growth. Engineered nanomaterials have great potential in mitigating toxic metal(loid) stress in plants. However, there are few details of nanoparticles (NPs) involved in Panax notoginseng response to cadmium (Cd) and arsenic (As).
View Article and Find Full Text PDF