Spinal cord functional MRI studies require precise localization of spinal levels for reliable voxel-wise group analyses. Traditional template-based registration of the spinal cord uses intervertebral discs for alignment. However, substantial anatomical variability across individuals exists between vertebral and spinal levels.
View Article and Find Full Text PDFClinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e.
View Article and Find Full Text PDFImaging Neurosci (Camb)
June 2025
Deep learning models have achieved remarkable success in segmenting brain white matter lesions in multiple sclerosis (MS), becoming integral to both research and clinical workflows. While brain lesions have gained significant attention in MS research, the involvement of spinal cord lesions in MS is relatively understudied. This is largely owing to the variability in spinal cord magnetic resonance imaging (MRI) acquisition protocols, high individual anatomical differences, the complex morphology and size of spinal cord lesions, and lastly, the scarcity of labeled datasets required to develop robust segmentation tools.
View Article and Find Full Text PDFMorphometric measures derived from spinal cord segmentations can serve as diagnostic and prognostic biomarkers in neurological diseases and injuries affecting the spinal cord. For instance, the spinal cord cross-sectional area can be used to monitor cord atrophy in multiple sclerosis and to characterize compression in degenerative cervical myelopathy. While robust, automatic segmentation methods to a wide variety of contrasts and pathologies have been developed over the past few years, whether their predictions are stable as the model is updated using new datasets has not been assessed.
View Article and Find Full Text PDFBackground Context: Accurate and automatic MRI measurements are relevant for assessing spinal cord compression severity in degenerative cervical myelopathy (DCM) and guiding treatment. The widely-used maximum spinal cord compression (MSCC) index has limitations. Firstly, it normalizes the anteroposterior cord diameter by that above and below the compression but does not account for cord size variation along the superior-inferior axis, making MSCC sensitive to compression level.
View Article and Find Full Text PDFPurpose To develop a deep learning tool for the automatic segmentation of the spinal cord and intramedullary lesions in spinal cord injury (SCI) on T2-weighted MRI scans. Materials and Methods This retrospective study included MRI data acquired between July 2002 and February 2023. The data consisted of T2-weighted MRI scans acquired using different scanner manufacturers with various image resolutions (isotropic and anisotropic) and orientations (axial and sagittal).
View Article and Find Full Text PDFPrecise identification of spinal nerve rootlets is relevant to delineate spinal levels for the study of functional activity in the spinal cord. The goal of this study was to develop an automatic method for the semantic segmentation of spinal nerve rootlets from T2-weighted magnetic resonance imaging (MRI) scans. Images from two open-access 3T MRI datasets were used to train a 3D multi-class convolutional neural network using an active learning approach to segment C2-C8 dorsal nerve rootlets.
View Article and Find Full Text PDFDegenerative cervical myelopathy (DCM) represents the final consequence of a series of degenerative changes in the cervical spine, resulting in cervical spinal canal stenosis and mechanical stress on the cervical spinal cord. This process leads to subsequent pathophysiological processes in the spinal cord tissues. The primary mechanism of injury is degenerative compression of the cervical spinal cord, detectable by magnetic resonance imaging (MRI), serving as a hallmark for diagnosing DCM.
View Article and Find Full Text PDFPurpose: To develop a deep learning tool for the automatic segmentation of T2-weighted intramedullary lesions in spinal cord injury (SCI).
Material And Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord.
Magn Reson Med Sci
July 2024
The spinal cord plays a pivotal role in the central nervous system, providing communication between the brain and the body and containing critical motor and sensory networks. Recent advancements in spinal cord MRI data acquisition and image analysis have shown a potential to improve the diagnostics, prognosis, and management of a variety of pathological conditions. In this review, we first discuss the significance of standardized spinal cord MRI acquisition protocol in multi-center and multi-manufacturer studies.
View Article and Find Full Text PDFImaging Neurosci (Camb)
February 2024
Measures of spinal cord morphometry computed from magnetic resonance images serve as relevant prognostic biomarkers for a range of spinal cord pathologies, including traumatic and non-traumatic spinal cord injury and neurodegenerative diseases. However, interpreting these imaging biomarkers is difficult due to considerable intra- and inter-subject variability. Yet, there is no clear consensus on a normalization method that would help reduce this variability and more insights into the distribution of these morphometrics are needed.
View Article and Find Full Text PDFDeep brain stimulation (DBS) is a beneficial procedure for treating idiopathic Parkinson's disease (PD), essential tremor, and dystonia. The authors describe their set of imaging modalities used for a frameless and fiducial-less method of DBS. CT and MRI scans are obtained preoperatively, and STN parcellation is done based on diffusion tractography.
View Article and Find Full Text PDFDegenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing.
View Article and Find Full Text PDFPurpose: Spinal cord gray-matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter.
View Article and Find Full Text PDFQuant Imaging Med Surg
April 2022
Background: Degenerative cervical spinal cord compression is becoming increasingly prevalent, yet the MRI criteria that define compression are vague, and vary between studies. This contribution addresses the detection of compression by means of the Spinal Cord Toolbox (SCT) and assesses the variability of the morphometric parameters extracted with it.
Methods: Prospective cross-sectional study.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub
March 2023
Objectives: To determine the treatment effect of corticosteroids in periradicular therapy (PRT) for radicular pain and to compare different types of corticosteroids and ozone. We also examined the effect in different indication groups for periradicular therapy for each type of treatment agent.
Background: Various studies have examined the therapeutic value of periradicular infiltration using treatment agents consisting of local anesthetic and corticosteroids or ozone application for radicular pain.
The "Different Hearing" program (DHP) is an educational activity aimed at stimulating musical creativity of children and adults by group composing in the classroom, alternative to the mainstream model of music education in Czechia. Composing in the classroom in the DHP context does not use traditional musical instruments or notation, instead, the participants use their bodies, sounds originating from common objects as well as environmental sounds as the "elements" for music composition by the participants' team, with the teacher initiating and then participating and coordinating the creative process, which ends with writing down a graphical score and then performing the composition in front of an audience. The DHP methodology works with a wide definition of musical composition.
View Article and Find Full Text PDFJ Neurotrauma
November 2021
Degenerative cervical myelopathy (DCM) is a severe consequence of degenerative cervical spinal cord (CSC) compression. The non-myelopathic stage of compression (NMDC) is highly prevalent and often progresses to disabling DCM. This study aims to disclose markers of progressive neurochemical alterations in NMDC and DCM by utilizing an approach based on state-of-the-art proton magnetic resonance spectroscopy (H-MRS).
View Article and Find Full Text PDFBackground And Purpose: Non-myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially irreversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract-specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM.
View Article and Find Full Text PDF