A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CPEB3 can regulate seizure susceptibility by inhibiting the transcriptional activity of STAT3 on NMDARs expression. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The pathogenesis of epilepsy is complex, and current antiepileptic drugs do not effectively control the seizures. Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) regulates neuronal excitability, but its mechanism of action in epilepsy is not clear. In this paper, we investigated the effect of CPEB3 on seizures and elucidated its underlying molecular mechanism.

Methods: Bioinformatics-based search for genes closely associated with epilepsy. Changes in expression and cellular localization of CPEB3 in epilepsy were verified by western blotting (WB) and Immunofluorescence staining. Subsequently, The adeno-associated virus was employed to overexpress or knockdown in mice. Behavioral experiments verified the effect of CPEB3 on epileptic phenotype, and the molecular mechanism of CPEB3 affecting epileptic phenotype was explored by WB, real-time quantitative polymerase chain reaction (RT-qPCR), RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (CHIP).

Results: The results were that CPEB3 was downregulated epilepsy in model mice and patients with temporal lobe epilepsy and co-expressed with neurons. Behavioral experiments have shown that CPEB3 negatively regulates epilepsy phenotype in mice. In addition, exogenous CPEB3 can also bind to the mRNA of signal transducer and activator of transcription 3 (STAT3) and inhibit its translation, resulting in lower levels of STAT3 and p-STAT3, reduced nuclear translocation of STAT3, and decreased STAT3-mediated transcriptional activity of GluN1, GluN2A, and GluN2B, suppressing the expression of NMDAR subunits, which attenuate the seizure degree and susceptibility of epileptic mice.

Conclusion: These findings suggest that CPEB3 may influence excitability and susceptibility in epileptic mice by regulating STAT3 translation and transcriptional activities to promote NMDARs expression. This mechanism could offer insights into novel therapeutic targets for epilepsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852879PMC
http://dx.doi.org/10.1186/s10020-025-01136-2DOI Listing

Publication Analysis

Top Keywords

cpeb3
10
transcriptional activity
8
nmdars expression
8
epilepsy
8
behavioral experiments
8
cpeb3 epileptic
8
epileptic phenotype
8
susceptibility epileptic
8
stat3
5
cpeb3 regulate
4

Similar Publications