98%
921
2 minutes
20
Heparin, traditionally known for its anticoagulant properties, has recently been identified as a potential agent in cancer therapy. Its derivatives, including low-molecular-weight heparin (LMWH) and unfractionated heparin (UFH), are being investigated for their multifaceted roles in oncology. This review focuses on the expanding exploration of heparin's anticancer effects and its possible integration into cancer treatment protocols. The primary aim is to consolidate and analyze current research on the anticancer properties of heparin and its derivatives. It seeks to illuminate the mechanisms by which these compounds influence cancer progression, including their impact on angiogenesis, tumor cell proliferation, immune response modulation, and the inhibition of cancer cell migration and invasion. Additionally, the review aims to evaluate the potential of heparin and its derivatives in complementing existing chemotherapy treatments. An extensive literature review was conducted, encompassing in vitro, in vivo, and clinical studies. Sources included a range of scientific databases, employing keywords related to heparin and oncology. The selected studies were critically reviewed to extract relevant data on the efficacy, mechanisms, and potential clinical applications of heparin in cancer therapy. The results reveals that heparin and its derivatives exhibit significant anticancer activity across various research settings; key findings include the inhibition of angiogenesis, reduction in tumor cell proliferation, stimulation of immune responses, and the limitation of cancer cell migration and invasion. The compounds also show promise as adjuncts to conventional chemotherapy, potentially enhancing the efficacy of existing cancer treatments. This review highlights the burgeoning role of heparin and its derivatives in the realm of cancer therapy, marking a shift from their traditional use as anticoagulants. While promising, the research underscores the need for further comprehensive studies to fully understand the mechanisms of action, optimal dosing, potential side effects, and patient selection criteria. The potential integration of heparin into cancer treatment regimens opens new therapeutic possibilities warranting continued investigation in this rapidly evolving field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850695 | PMC |
http://dx.doi.org/10.1007/s12672-025-01985-7 | DOI Listing |
PLoS One
September 2025
Orthopaedics, Hebei Medical University Third Hospital, Shijiazhuang, China.
Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Zhejiang Key Laboratory of Bioorganic Synthesis, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Huadong Indust
Heparin, a clinically essential anticoagulant, has long been derived from animal sources, posing risks of contamination and supply chain instability. Bioengineered heparin, synthesized via microbial fermentation and enzymatic modification, offers a promising alternative with enhanced safety, homogeneity, and scalability. This review highlights recent advances in heparosan biosynthesis, enzymatic sulfation strategies, and analytical characterization for bioengineered heparin.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.. Electronic address:
A naturally derived library of glycomimetic mimicking the structure-function of heparan sulfate (HS) remains an untapped reservoir for drug discovery against viral infections. In this work we screened a library of marine-derived sulfated glycans from seaweeds and sea cucumbers to investigate if they can compete for the ligand/receptor binding sites to prevent virus entry. Multiple promising candidates were identified, such as RPI-27 (IC: 1.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Clinical Laboratory, Tenri University, 80-1, Bessho-cho, Tenri, 632-0018, Nara, Japan.
Activated partial thromboplastin time (APTT) prolongation occurs due to coagulation factor deficiencies/inhibitors, lupus anticoagulant (LA), and anticoagulant-taking, necessitating discrimination through further testing. Clot waveform analysis (CWA) can discriminate causes while measuring APTT, but conventional CWA exhibits moderate accuracy due to visual judgement and limited parameter use. We applied deep learning (DL) techniques to huge numerical data constituting clot waveforms and their first- and second-derivative curves (CWA curves) to leverage hidden features for developing an accurate classification model.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Cardiology, Yueyang Central Hospital, Yueyang, Hunan Province 414000, China. Electronic address:
Background: Heparin reduces myocardial ischemia-reperfusion (I/R) injury, which is associated with pyroptosis. As a derivative of heparin, non-anticoagulant heparin (NAH) is rarely researched in this field. This study aims to explore the mechanisms of NAH in myocardial I/R injury and pyroptosis.
View Article and Find Full Text PDF