A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

miR3398-VqMYB15 Regulates the Synthesis of Stilbene in Vitis quinquangularis. | LitMetric

miR3398-VqMYB15 Regulates the Synthesis of Stilbene in Vitis quinquangularis.

Plant Cell Environ

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grapevine (Vitis vinifera L.) is an economically important fruit crop grown worldwide. Grapevine is cultivated extensively in China, and certain wild grapes exhibit excellent resistance to pathogens and stress. MicroRNAs (miRNAs) act as key regulators of plant growth, development, and immunity; however, their functions in grape stilbene synthesis are poorly understood. We identified an miRNA (miR3398) that negatively regulates the transcription factor MYB15 and participates in the synthesis of stilbene from Vitis quinquangularis (V. quinquangularis). MiR3398 and VqMYB15 showed completely opposite expression patterns after AlCl treatment, and the interaction between miR3398 and VqMYB15 was confirmed using 5'-RACE ligase-mediated rapid amplification of cDNA ends, dual-luciferase reporter gene system, and western blot analysis. VqMYB15 could bind to the VqSTS48 promoter by using yeast one-hybrid and electrophoretic mobility shift assay, and overexpression of VqMYB15 promoted stilbene accumulation in grape leaves. Using an overexpression and silencing system, we found that miR3398 negatively targets VqMYB15 to synthesis of stilbenes. We used Al as an elicitor, indicating that miR3398 plays an important role in the plant immunity of V. quinquangularis. We also found that miR3398 is involved in plant immunity by detecting its promoter activity in grape protoplasts, luciferase imaging, and transgenic Arabidopsis thaliana. More importantly, we found that an ethylene transcription factor, ERF057, can bind to the promoter of miR3398 using Y1H and EMSA assays and inhibit its transcription using DLR, luciferase imaging, and β-glucuronidase transcript assays. Overexpression of VqERF057 reduced miR3398 transcript in V. quinquangularis and transgenic grapevine calli, but increased the stilbene content. These findings contribute to the understanding of the biological functions of miR3398 regulates stilbene synthesis in grapevines and clarify the molecular mechanism underlying the interaction between miR3398 and VqMYB15.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15446DOI Listing

Publication Analysis

Top Keywords

mir3398 vqmyb15
12
mir3398
10
synthesis stilbene
8
stilbene vitis
8
vitis quinquangularis
8
stilbene synthesis
8
mir3398 negatively
8
transcription factor
8
quinquangularis mir3398
8
interaction mir3398
8

Similar Publications