Integrative gray matter volume and molecular analyses of altered intrinsic neural timescale in internet gaming disorder.

Prog Neuropsychopharmacol Biol Psychiatry

Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China; Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, PR China; Henan Engineering Technology Research Center for Detection and Application of Brain Function, PR C

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Internet gaming disorder (IGD) frequently features abnormalities in emotional and cognitive processing, for which the specific neurobiological mechanisms are not known. The intrinsic neural timescale (INT) gradient reflects how long neural information is stored in a specialized brain region and represents its function. Therefore, we investigated whether IGD exhibited altered INT and accompanying gray matter volume (GMV) and underlying molecular architectural abnormalities.

Methods: Resting-state functional magnetic resonance data from 57 patients with IGD (IGDs) and 50 demographically matched healthy controls (HCs) were collected, and INT was calculated by assessing the autocorrelation of intrinsic neural signals. Voxel-based morphometric analysis was conducted to calculate whole-brain GMV. Then, comparing INT between groups and correlation analysis with clinical characteristics was performed. Furthermore, correlations between INT and PET- and SPECT-driven maps were used to examine specific neurotransmitter system alternations.

Result: Compared to HCs, IGDs exhibited shorter timescales in the bilateral insula, bilateral parahippocampal gyrus, left amygdala, and left superior temporal pole. The decreased INT in the right insula was positively correlated with the severity of internet addiction. Interestingly, the shorter timescales are spatially associated with the serotonergic system.

Conclusion: This study suggests atypical emotional and cognitive processing deficits in localized brain regions of IGDs. And these findings establish a link between abnormal local neurodynamics and structures and neurotransmitters, which facilitates synthesized comprehension of IGDs and provides new perspectives for treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2025.111296DOI Listing

Publication Analysis

Top Keywords

intrinsic neural
12
gray matter
8
matter volume
8
neural timescale
8
internet gaming
8
gaming disorder
8
emotional cognitive
8
cognitive processing
8
shorter timescales
8
int
6

Similar Publications

Multimode neural population coding of diverse innate fear response by mitral and tufted cells.

Cell Rep

September 2025

International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:

Neurons that encode odor information are fundamental to innate fear processes, yet how mitral/tufted (M/T) cells encode innate fear remains unknown. Here, we identify three different response patterns of M/T cells in the dorsal olfactory bulb (dOB) during active avoidance elicited by non-dehydrogenated 2,4,5-trimethylthiazole (nTMT) through in vivo calcium imaging and multielectrode recordings in mice, including enhanced responses, suppressed responses, and no response. Remarkably, suppressed response M/T cells encode active avoidance, whereas suppressed and enhanced response M/T cells jointly encode passive freezing.

View Article and Find Full Text PDF

Cross-modal hashing aims to leverage hashing functions to map multimodal data into a unified low-dimensional space, realizing efficient cross-modal retrieval. In particular, unsupervised cross-modal hashing methods attract significant attention for not needing external label information. However, in the field of unsupervised cross-modal hashing, there are several pressing issues to address: (1) how to facilitate semantic alignment between modalities, and (2) how to effectively capture the intrinsic relationships between data, thereby constructing a more reliable affinity matrix to assist in the learning of hash codes.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

The 2024 Nobel Prizes in Chemistry and Physics mark a watershed moment in the convergence of artificial intelligence (AI) and molecular biology. This article explores how AI, particularly deep learning and neural networks, has revolutionized protein science through breakthroughs in structure prediction and computational design. It highlights the contributions of 2024 Nobel laureates John Hopfield, Geoffrey Hinton, David Baker, Demis Hassabis, and John Jumper, whose foundational work laid the groundwork for AI tools such as AlphaFold.

View Article and Find Full Text PDF

Recent advancements in Spatial Transcriptomics (ST) technologies have enabled researchers to investigate the relationships between cells while simultaneously considering their spatial locations within tissue. These technologies facilitate the integration of gene expression data with spatial information for clustering analysis. While many clustering methods have been developed, they typically rely on the dataset's intrinsic features without incorporating domain knowledge, such as marker genes.

View Article and Find Full Text PDF