98%
921
2 minutes
20
Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations in biological samples, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the diffraction-limited three-dimensional distribution of the orientations and positions of ensembles of fluorescent dipoles that label biological structures. We share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model the distributions based on the polarization-dependent efficiency of excitation and detection of emitted fluorescence, using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labeled giant unilamellar vesicles, fast-scarlet-labeled cellulose in xylem cells, and phalloidin-labeled actin in U2OS cells. Additionally, we observe phalloidin-labeled actin in mouse fibroblasts grown on grids of labeled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874040 | PMC |
http://dx.doi.org/10.1073/pnas.2406679122 | DOI Listing |
ChemMedChem
September 2025
Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany.
The transcription factor signal transducer and activator of transcription (STAT)4 is a potential target for autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and diabetes mellitus. p-Biphenyl phosphate is reported as an inhibitor of the STAT4 Src homology 2 domain, and it is developed to the phosphonate-based inhibitor Stafori-1. Herein, structure-activity relationships of p-biaryl phosphates against STAT4 and their selectivity profiles against other STAT proteins are reported.
View Article and Find Full Text PDFRSC Med Chem
August 2025
Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz Staudinger Weg 5 55128 Mainz Germany
Parallel syntheses and their throughput capabilities are powerful tools for the rapid generation of molecule libraries, making them highly beneficial for accelerating hit identification in early-stage drug discovery. Utilizing chemical spaces and virtual libraries enhances time and cost efficiency, enabling the faster exploitation of chemically diverse compounds. In this study, a parallel synthesis method for rapidly generating a 5'-amino-5'-deoxy adenosine-based amide and sulfonamide library of 42 compounds is described with high yields and purity, which is economical and ecological due to the reduced requirements for extensive purification.
View Article and Find Full Text PDFFront Chem
August 2025
Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea.
In this work, a fluorescent probe, VanPI-CarE, with a vanillin-pyridine-imidazole core structure was developed for carboxylesterase (CarE) detection in macrophage polarization during bone homeostasis. The probe responded to CarE with a distinct fluorescence reporting signal at 490 nm upon excitation at 355 nm. Tests in solution showed the advantages of VanPI-CarE, including high sensitivity, excellent stability under various working conditions, high selectivity, and low cytotoxicity.
View Article and Find Full Text PDFOncol Res
September 2025
Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
Objectives: Proteasomes, multi-subunit proteases, are key actors of cellular protein catabolism and a number of regulatory processes. The detection of subtle proteasome functioning in tumors may contribute to our understanding of the mechanisms of cancer development. The current study aimed to identify the role of low molecular mass protein 2 (LMP2), a proteasome immune subunit, in the development of mouse colon 26 (C26) adenocarcinoma.
View Article and Find Full Text PDFACS Omega
September 2025
Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, PO Box 549, 79070-900 Campo Grande, MS, Brazil.
The production of diesel-biodiesel blends (DBB) aims to mitigate the environmental impacts of diesel combustion. However, gaps remain in understanding their molecular properties, particularly fluorescence anisotropy (FA), which reflects molecular rotation and environmental constraints (e.g.
View Article and Find Full Text PDF