98%
921
2 minutes
20
Background: Molecular mimicry between commensal bacterial antigens and tumor-associated antigens (TAAs) has shown potential in enhancing antitumor immune responses. This study leveraged this concept using commensal bacterial antigens, termed OncoMimics, to induce TAA-derived peptide (TAAp)-specific cross-reactive cytotoxic T cells and improve the efficacy of peptide-based immunotherapies.
Methods: The discovery of OncoMimics primarily relied on a bioinformatics approach to identify commensal bacteria-derived peptide sequences mimicking TAAps. Several OncoMimics peptide (OMP) candidates were selected in silico based on multiple key parameters to assess their potential to elicit and ameliorate immune responses against TAAs. Selected OMPs were synthesized and tested for their affinity and stability on the major histocompatibility complex (MHC) in vitro and for their capacity to elicit cross-reactive OMP-specific/TAAp-specific CD8+T cell responses in human leukocyte antigen (HLA)-A2-humanized mice, human peripheral blood mononuclear cells (PBMC) and patients with cancer.
Results: Selected OMPs demonstrated superior HLA-A2 binding affinities and stabilities compared with homologous TAAps. Vaccination of HLA-A2-humanized mice with OMPs led to the expansion of OMP-specific CD8+T cells that recognize both OMPs and homologous TAAps, exhibiting cytotoxic capacities towards tumor antigens and resulting in tumor protection in a prophylactic setting. Using PBMCs from HLA-A2+healthy donors, we confirmed the ability of OMPs to elicit potent cross-reactive OMP-specific/TAAp-specific CD8 T-cell responses. Interestingly, we observed a high prevalence of OMP-specific T cells across donors. Cytotoxicity assays revealed that OMP-stimulated human T cells specifically targeted and killed tumor cells loaded with OMPs or TAAps. Preliminary data from an ongoing clinical trial (NCT04116658) support these findings, indicating that OMPs elicit robust OMP-specific/TAAp-specific CD8+T cell responses in patients. Initial immunomonitoring data revealed sustained T-cell responses over time, with T cells maintaining a polyfunctional, cytotoxic and memory phenotype, which is critical for effective antitumor activity and long-term immune surveillance.
Conclusions: These findings suggest that leveraging naturally occurring commensal-derived antigens through OMPs could significantly remodel the tumor immune landscape, offering guidance for a promising strategy for cancer peptide-based immunotherapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842988 | PMC |
http://dx.doi.org/10.1136/jitc-2024-010192 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant, Science and Technology, Huazhong Agricultural
Galectins are a family of carbohydrate-binding proteins known to maintain intestinal microbiota homeostasis. Emerging evidence suggests that the bacterial symbiont plays a role in modulating insecticide resistance in insect. However, whether galectins influence insecticide susceptibility through microbiota regulation remains unclear.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu
Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.
View Article and Find Full Text PDFWater Res
August 2025
College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:
This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.
View Article and Find Full Text PDFKlin Mikrobiol Infekc Lek
June 2025
Institute of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno,Czech Republic, e-mail:
Capnocytophaga spp. are typical members of the commensal microflora of the oral cavity. However, C.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Oral & Maxillofacial Surgery, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
The basis of the development of oral cancer has been reported to be inflammation (e.g., periodontitis) caused by dysbiosis of the oral microbiota (i.
View Article and Find Full Text PDF