98%
921
2 minutes
20
PIWI-interacting RNAs (piRNAs) play critical regulatory roles in a variety of physiological and pathological process, and their aberrant expression levels are implicated in the progression and prognosis of cancers. Herein, we construct an enzymatic cascade amplification-modulated Thermus thermophilus Argonaute (TtAgo) biosensor for simultaneous monitoring of multiple piRNAs (i.e., piR-36026 and piR-36743) in breast tissues. Targets piR-36026 and piR-36743 can initiate enzymatic cascade amplification events to produce two corresponding amplicons with 5'-phosphate termini (i.e., gDNAs 1 and 2), respectively. The gDNAs 1 and 2 can serve as the DNA guides to activate TtAgo-dependent cyclic cleavage of reporters 1 and 2, respectively, liberating numerous Cy3 and Cy5 fluorophores. Taking advantage of the high efficiency of enzymatic cascade amplification, and the precise recognition and multi-turnover cleavage activity of TtAgo, this TtAgo biosensor achieves high sensitivity, good selectivity, and multiplex analysis capability. Moreover, it can be employed for simultaneous quantification of endogenous piR-36026 and piR-36743 with single-cell sensitivity, and differentiation of piRNA levels in the tissues of breast cancer patients and healthy individuals, offering a promising platform for bioanalytical and biomedical researches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2025.117261 | DOI Listing |
Int J Mol Med
November 2025
Department of Neurosciences 'Rita Levi Montalcini', University of Turin, I‑10125 Turin, Italy.
Kinases are activators of well‑known inflammatory cascades implicated in metabolic disorders, and abnormal activation of casein kinase II (CK2) is associated with several inflammatory disorders. However, thus far, its role in the low‑grade chronic inflammatory response known as 'metaflammation', which is a hallmark of obesity and type 2 diabetes, has not yet been elucidated. The present study aimed to evaluate the role of CK2 in diet‑induced metaflammation and the effects of the CK2 inhibitor 4,5,6,7‑tetrabromobenzotriazole (TBB) on a murine model fed a high‑fat‑high‑sugar (HFHS) diet.
View Article and Find Full Text PDFLangmuir
September 2025
State Key Laboratory of Synthetic Biology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
Effective degradation and detoxification of the highly toxic organophosphate pesticide methyl parathion (MP) are important for pollution treatment and sustainable development. Enzymatic hydrolysis of MP by organophosphate hydrolase (OPH) is an effective way. However, hydrolytic product 4-nitrophenol (4-NP) remains environmentally hazardous.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
Overcoming resistance to radiotherapy remains a significant challenge in breast cancer management. A one-step coordinated synthesis of BODIPY-integrated photodynamic nanozymes (FZBNPs) that facilitate an orthogonal catalytic cascade for radiotherapy potentiation is presented. The engineered FZBNPs simultaneously alleviate tumor hypoxia through catalase-mimetic oxygen (O) generation and amplify reactive oxygen species (ROS) production via peroxidase-like activity, synergizing with BODIPY-mediated singlet oxygen (O) generation under 660 nm light irradiation.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Herein, a novel S/N co-doped carbon-based nanozyme (S/N-Fe) with peroxidase-like properties was synthesized by doping thiourea into Fe MOF and introducing g-CN for pyrolysis. Generated by enzymatic cascade with acetylcholinesterase (AChE) involved, HO could react with S/N-Fe to generate reactive oxygen species (ROS). O-Phenylenediamine (OPD) could be catalyzed by ROS, resulting in the production of 2,3-diaminophenazine (DAP) with a fluorescent emission at 564 nm.
View Article and Find Full Text PDF