98%
921
2 minutes
20
In 2019 there were over 2.8 million cases of antibiotic-resistant bacterial infection in the US with gram negative organisms having up to a 6% rate of mortality. Bacteriophage (phage) therapy holds great promise to treat such infections. However, the biologic features which influence the pharmacokinetics (PK) of phage have been difficult to characterize due to a lack of standardized protocols of phage purification, tissue assay, and labeling. Here we present robust methods for ultrapure phage preparation as well as non-destructive highly stable attachment of radio-iodide to phage using the well described Sulfo-SHPP linker. We purified and radiolabeled the phage strains, PAML-31-1, OMKO1, and Luz24 lytic to drug-resistant Pseudomonas aeruginosa for biodistribution assay in normal young adult CD-1 mice injected via penile vein. Groups of 5 mice were euthanized and tissues/organs removed for weighing and scintillation well counting of I-125 activity at 30 min, 1h, 2h, 4h, 8h, and 24h. A physiologically based PK (PBPK) model was then constructed focusing on compartments describing blood, lung, muscle, bone, liver, stomach, spleen, small intestines, large intestines, and kidney. Model permeability coefficient (P) was estimated across all organs as being 0.0227. Tissue partition coefficients (K) were estimated for high perfusion organs (lung and kidney) as 0.000138, GI organs (liver, spleen, and stomach) as 0.627, and all other organs as 0.220. Elimination was governed by MPS-mediated elimination (T) and active secretion at epithelial barriers (CL), which were estimated as 0.00301 h and 0.0145 L/h/kg, respectively. Monte Caro simulations showed that the rapid elimination phage in humans is expected, resulting in phage blood concentrations being lower than 10 PFU/mL (limit of quantification by plaque assay) by 12 hours. As such, multi-dose regimens and continuous infusion regimens were the only strategies that allowed continuously detectible phage concentrations. Evaluation of different dose levels showed that at a maximum dose of 10 PFU, phage concentrations are expected to be approximately 10 PFU/g. Our physiologically based PK model of phage represents the first rigorous pre-clinical assessment of phage PK utilizing contemporary pharmacometric approaches amenable to both pre-clinical and clinical study design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839030 | PMC |
http://dx.doi.org/10.1101/2025.02.06.636931 | DOI Listing |
Ann Am Thorac Soc
September 2025
University of Florida, Department of Medicine, Gainesville, Florida, United States;
Background: Pulmonary hypertension (PH) is a systemic illness with increasingly subtle disease manifestations including sleep disruption. Patients with PH are at increased risk for disturbances in circadian biology, although to date there is no data on "morningness" or "eveningness" in pulmonary vascular disease.
Research Questions: Our group studied circadian rhythms in PH patients based upon chronotype analysis, to explore whether there is a link between circadian parameters and physiologic risk-stratifying factors to inform novel treatment strategies in patients with PH?
Study Design And Methods: We serially recruited participants from July 2022 to March 2024, administering in clinic the Munich Chronotype Questionnaire (MCTQ).
Traffic Inj Prev
September 2025
School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
Objective: To clarify the potential risks and causative mechanisms of glare from nighttime road fill lights on driving safety, this study investigates the dual interference of glare-induced visual cognitive load and physiological stress.
Methods: A field driving experiment involving 20 drivers was conducted, with real-time collection of visual data (e.g.
Traffic Inj Prev
September 2025
Chongqing Jianzhu College, Chongqing, P.R. China.
Purpose: The monotonous lighting environment in extra-long tunnels often induces mind-wandering in drivers. To address this issue, this study explores effective strategies to optimize tunnel lighting environments by configuring various background colors and special lighting zones to enhance the alertness of young drivers and ensure driving safety.
Methods: A virtual driving simulator was utilized to carry out the experiment.