Freeze-Thaw Imaging for Microorganism Classification Assisted with Artificial Intelligence.

ACS Nano

The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Tec

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fast and cost-effective microbial classification is crucial for clinical diagnosis, environmental monitoring, and food safety. However, traditional methods encounter challenges including intricate procedures, skilled personnel needs, and sophisticated instrumentations. Here, we propose a cost-effective microbe classification system, also termed freeze-thaw-induced floating pattern of AuNPs (FTFPA), coupled with artificial intelligence, which is capable of identifying microbes at a cost of $0.0023 per sample. Specifically, FTFPA utilizes AuNPs for coincubation with microbes, resulting in distinct patterns upon freeze-thawing due to their weak interaction. These patterns are digitized to train models that distinguish nine microbes in various tasks. The positive sample detection model achieved an F1 score of 0.976 ( = 194), while the multispecies classification task reached a macro F1 score of 0.859 ( = 1728). To address scalability and lightweight requirements across diverse classification scenarios, we categorized microbes based on species classification levels. The macro F1 score of the hierarchical model ( = 5184), order level model ( = 5184), Enterobacteriales level model ( = 2550), and Bacillales level model ( = 1974) was 0.854, 0.907, 0.958, and 0.843. In summary, our method is user-friendly, requiring only simple equipment, is easy to operate, and convenient, providing a platform for microbial identification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c16949DOI Listing

Publication Analysis

Top Keywords

level model
12
artificial intelligence
8
macro score
8
model 5184
8
classification
6
model
5
freeze-thaw imaging
4
imaging microorganism
4
microorganism classification
4
classification assisted
4

Similar Publications

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

Distribution and Risk Factors of Scrub Typhus in South Korea, From 2013 to 2019: Bayesian Spatiotemporal Analysis.

JMIR Public Health Surveill

September 2025

Department of Preventive Medicine, College of Medicine, Korea University, 73 Goryeodae-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea, 82 2-2286-1169.

Background: Scrub typhus (ST), also known as tsutsugamushi disease, is a common febrile vector-borne illness in South Korea, transmitted by trombiculid mites infected with Orientia tsutsugamushi, with rodents serving as the main hosts. Although vector-borne diseases like ST require both a One Health approach and a spatiotemporal perspective to fully understand their complex dynamics, previous studies have often lacked integrated analyses that simultaneously address disease dynamics, vectors, and environmental shifts.

Objective: We aimed to explore spatiotemporal trends, high-risk areas, and risk factors of ST by simultaneously incorporating host and environmental information.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is the leading cause of dementia worldwide, with significant cognitive and behavioural impairments that devastate individuals and their families. Cohort-level findings, demonstrate the broader population-level implications of Sleep and Circadian Rhythm Disruption (SCRD) in AD and underscore the need for early interventions, emphasizing the importance of timely action. However, the mechanism remains unclear.

View Article and Find Full Text PDF

Background: With the development of artificial intelligence, obtaining patient-centered medical information through large language models (LLMs) is crucial for patient education. However, existing digital resources in online health care have heterogeneous quality, and the reliability and readability of content generated by various AI models need to be evaluated to meet the needs of patients with different levels of cultural literacy.

Objective: This study aims to compare the accuracy and readability of different LLMs in providing medical information related to gynecomastia, and explore the most promising science education tools in practical clinical applications.

View Article and Find Full Text PDF

Rationale: There are insufficient data to inform the management of central sleep apnea (CSA) in patients with heart failure (HF) with reduced ejection fraction (HFrEF). Nocturnal oxygen therapy (NOT) has been postulated to benefit CSA patients with HFrEF, but has not been rigorously studied. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.

View Article and Find Full Text PDF