98%
921
2 minutes
20
Local adaptation represents the balance of selection and gene flow. Increasingly, studies find that adaptation can occur on spatial scales much smaller than the scale of dispersal, resulting in balanced polymorphisms within populations. However, microgeographic adaptation might be facilitated or hindered by large-scale environmental heterogeneity, such as across latitude. Marine systems present a special case, as many marine species have high dispersal capacity so that dispersal 'neighbourhoods' may encompass environmental heterogeneity over both small and large spatial scales. Here, we leverage fine-scale sampling across the California range of the Pacific purple sea urchin (Strongylocentrotus purpuratus), a species with previous evidence of both local adaptation and extremely high gene flow. We find that despite the complete absence of neutral population structure, satellite-based sea surface temperature and tidal zone are associated with subtle genetic differences among populations, suggesting that balanced polymorphisms can lead to adaptation across both large (latitudinal) and small (subtidal vs. intertidal) scales. In fact, some of the same genetic variants differentiate populations at both spatial scales, potentially because both environmental parameters are related to temperature. Further, we find that genes that are expressed at a single tissue or life history stage are more divergent than expected across both latitudinal and tidal zone comparisons, suggesting that these genes have specific functions that might generate phenotypic variation important for local adaptation. Together, these results suggest that even in species with little population structure, genetic variation can be sorted across varying spatial scales, potentially resulting in local adaptation across complex environmental mosaics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874683 | PMC |
http://dx.doi.org/10.1111/mec.17700 | DOI Listing |
Math Biosci
September 2025
Department of Mathematics, Western University, London, Ontario, N6A 5B7, Canada. Electronic address:
Pine wilt disease (PWD) is mainly spread by Monochamus alternatus (in short, M. alternatus). Woodpecker, as the natural predator of M.
View Article and Find Full Text PDFJ Neurosci Methods
September 2025
Department of Computer Science and Engineering, IIT (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India. Electronic address:
Background: Interpretation of motor imagery (MI) in brain-computer interface (BCI) applications is largely driven by the use of electroencephalography (EEG) signals. However, precise classification in stroke patients remains challenging due to variability, non-stationarity, and abnormal EEG patterns.
New Methods: To address these challenges, an integrated architecture is proposed, combining multi-domain feature extraction with evolutionary optimization for enhanced EEG-based MI classification.
Cell Rep Methods
September 2025
Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland. Electronic address:
In cancer research, multiplexed imaging allows detailed characterization of the tumor microenvironment (TME) and its link to patient prognosis. The integrated immunoprofiling of large adaptive cancer patient cohorts (IMMUcan) consortium collects multi-modal imaging data from thousands of patients with cancer to perform broad molecular and cellular spatial profiling. Here, we describe and compare two workflows for multiplexed immunofluorescence (mIF) and imaging mass cytometry (IMC) developed within IMMUcan to enable the generation of standardized data for cancer tissue analysis.
View Article and Find Full Text PDFSci Total Environ
September 2025
Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA/DBI), Universidade Estadual de Maringá, Maringá, Brazil; Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPELIA)/PEA/CCB, Universidade Estadual de Maringá (UEM), Maringá, Brazil.
The flood pulse is a key driver of species distribution and richness in floodplains, yet the underlying components of its effect on species richness remain incompletely understood. We examined how three key components, namely species spatial aggregation, density, and species abundance distribution (SAD), explain seasonal variation in phytoplankton richness across multiple spatial scales. Our study encompassed 66 lakes from four Brazilian floodplains spanning approximately 2300 km across a subcontinental scale, comparing high- and low-water seasons in 2011-2012, including one dammed floodplain.
View Article and Find Full Text PDFWater Res
September 2025
Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang, 050061, China.
Groundwater nitrate (NO) and sulfate (SO) pollution in semi-arid regions has attracted widespread attention. However, unveiling the dynamics and sources of NO and SO in regional groundwater is challenging because of complex anthropogenic activities and hydrogeological conditions. This study combined physicochemistry and multiple stable isotopes (δH-HO, δO-HO, δN-NO, δO-NO, δS-SO, and δO-SO) to explore the spatiotemporal patterns, driving factors, sources, and potential health hazards of NO and SO in groundwater on the Loess Plateau, China.
View Article and Find Full Text PDF