Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An active dual-joint back-support exoskeleton with motors at both lumbar and hip level was designed to reduce spinal musculoskeletal loading and preserve lumbar flexibility during lifting. A subject-specific controller estimated the moment actively generated by back muscles to counteract gravitational forces on the upper body, minimising a counter-productive abdominal muscle contraction. Eight subjects lifted a 15 kg load using free technique with four assistance levels, i.e. 0%, 30%, 50%, and 70% of the active moment. Time-averaged L5S1 compressive force and back muscle active moment estimated by an EMG-driven biomechanical model, decreased by 5.5-9.3% and 14.9-28.6%, respectively, with non-zero assistance. Higher assistance did not yield larger L5S1 compression reduction but did gain further reduction in the time-averaged back muscles active moment. No significant changes in abdominal muscle activity and minor changes in lumbar flexion were observed suggesting the controller and dual-joint design achieved their objectives.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00140139.2025.2466030DOI Listing

Publication Analysis

Top Keywords

active moment
12
assistance levels
8
back-support exoskeleton
8
spinal musculoskeletal
8
musculoskeletal loading
8
abdominal muscle
8
active
5
influence varied
4
assistance
4
varied assistance
4

Similar Publications

A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.

View Article and Find Full Text PDF

Purpose: To assess the association between skeletal-muscle endurance performance and mitochondrial oxidative capacity of the hamstrings as respectively measured by biomechanical and physiological standards.

Methods: Nineteen (12 men and 7 women) healthy, young, recreationally active participants enrolled in our study. Participant characteristics comprised a mean and SD age of 21.

View Article and Find Full Text PDF

Effect of knee joint position on soleus muscle function during isokinetic plantarflexion.

Physiol Int

September 2025

2Faculty of Sports Science, Ningbo University, No. 818 Fenghua Road, Jiangbei District, 315211, Ningbo City, Zhejiang Province, PR China.

Purpose: Contribution of the gastrocnemii muscles to ankle moment is influenced by the knee joint position because they span the knee and the ankle joint as well. However, limited information is available on the effect of knee joint position on soleus activation under dynamic plantarflexion, hence the aim of this study was to investigate if soleus have a compensatory strategy in fascicle behavior or EMG activity during knee flexed plantarflexion in order to reduce the magnitude of the decrement in ankle moment.

Equipment And Methods: Isokinetic dynamometry with EMG and ultrasound measurements was used to estimate medial gastrocnemius and soleus behavior during knee flexed and extended plantarflexions using three angular velocities.

View Article and Find Full Text PDF

Background: Knee osteoarthritis (OA) causes pain and diminishes quality of life. Backward walking exercise (BWE) has been shown to improve lower muscle strength and reduce knee adduction moment, making it a recommended intervention for knee OA rehabilitation. This study aims to evaluate the effectiveness of BWE combined with conventional rehabilitation programs on pain intensity and disability among individuals with knee OA.

View Article and Find Full Text PDF

The primary purpose of this study was to determine the preoperative predictors of gait biomechanics 6 months after unilateral total knee arthroplasty (TKA). There were 126 participants (age 64.4 ± 7.

View Article and Find Full Text PDF