Publications by authors named "Mohamed Irfan Mohamed Refai"

An active dual-joint back-support exoskeleton with motors at both lumbar and hip level was designed to reduce spinal musculoskeletal loading and preserve lumbar flexibility during lifting. A subject-specific controller estimated the moment actively generated by back muscles to counteract gravitational forces on the upper body, minimising a counter-productive abdominal muscle contraction. Eight subjects lifted a 15 kg load using free technique with four assistance levels, i.

View Article and Find Full Text PDF

While active back-support exoskeletons can reduce mechanical loading of the spine, current designs include only one pair of actuated hip joints combined with a rigid structure between the pelvis and trunk attachments, restricting lumbar flexion and consequently intended lifting behavior. This study presents a novel active exoskeleton including actuated lumbar and hip joints as well as subject-specific exoskeleton control based on a real-time active low-back moment estimation. We evaluated the effect of exoskeleton support with different lumbar-to-hip (L/H) support ratios on spine loading, lumbar kinematics, and back muscle electromyography (EMG).

View Article and Find Full Text PDF
Article Synopsis
  • Muscle fatigue affects daily life and can lead to injuries or disorders, but current models used to track it aren't practical for real-world activities.
  • Personalized electromyography-driven musculoskeletal models (pEMS) provide a tailored approach by capturing specific muscle activity dynamics during various tasks, but they lack a detailed representation of muscle force decay.
  • A study involving eleven participants lifting weights developed a time-varying pEMS (t-pEMS) that improves the accuracy of muscle force calculations during fatigue, indicating that just five fatiguing contractions are needed for calibration.
View Article and Find Full Text PDF

One of the main technological barriers hindering the development of active industrial exoskeleton is today represented by the lack of suitable payload estimation algorithms characterized by high accuracy and low calibration time. The knowledge of the payload enables exoskeletons to dynamically provide the required assistance to the user. This work proposes a payload estimation methodology based on personalized Electromyography-driven musculoskeletal models (pEMS) combined with a payload estimation method we called "delta torque" that allows the decoupling of payload dynamical properties from human dynamical properties.

View Article and Find Full Text PDF

Back support soft exosuits are promising solutions to reduce risk of musculoskeletal injuries at workplaces resulting from physically demanding and repetitive lifting tasks. Design of novel active exosuits address the impact on the muscle activity and metabolic costs but do not consider other critical aspects such as comfort and user perception during the intended tasks. Thus, in this study, we describe a novel soft active exosuit in line with its impact on physiological and subjective measures during lifting.

View Article and Find Full Text PDF

Lower limb exoskeletons and exosuits ("exos") are traditionally designed with a strong focus on mechatronics and actuation, whereas the "human side" is often disregarded or minimally modeled. Muscle biomechanics principles and skeletal muscle response to robot-delivered loads should be incorporated in design/control of exos. In this narrative review, we summarize the advances in literature with respect to the fusion of muscle biomechanics and lower limb exoskeletons.

View Article and Find Full Text PDF

Measuring gait and balance recovery is necessary post stroke. In an earlier study, we developed a minimal three Inertial Measurement Units (IMUs) system called Portable Gait Lab (PGL). The PGL used the Centroidal Moment Pivot (CMP) assumption to estimate relative foot and centre of mass (CoM) positions, and thereby estimate gait parameters in healthy participants.

View Article and Find Full Text PDF

Background: Smoothness is commonly used for measuring movement quality of the upper paretic limb during reaching tasks after stroke. Many different smoothness metrics have been used in stroke research, but a 'valid' metric has not been identified. A systematic review and subsequent rigorous analysis of smoothness metrics used in stroke research, in terms of their mathematical definitions and response to simulated perturbations, is needed to conclude whether they are valid for measuring smoothness.

View Article and Find Full Text PDF

Background: The cause of smoothness deficits as a proxy for quality of movement post stroke is currently unclear. Previous simulation analyses showed that spectral arc length (SPARC) is a valid metric for investigating smoothness during a multi-joint goal-directed reaching task. The goal of this observational study was to investigate how SPARC values change over time, and whether SPARC is longitudinally associated with the recovery from motor impairments reflected by the Fugl-Meyer motor assessment of the upper extremity (FM-UE) in the first 6 months after stroke.

View Article and Find Full Text PDF

As an alternative to force plates, an inertial measurement unit (IMU) at the pelvis can offer an ambulatory method for measuring total center of mass (CoM) accelerations and, thereby, the ground reaction forces (GRF) during gait. The challenge here is to estimate the 3D components of the GRF. We employ a calibration procedure and an error state extended Kalman filter based on an earlier work to estimate the instantaneous 3D GRF for different over-ground walking patterns.

View Article and Find Full Text PDF

Ambulatory estimation of gait and balance parameters requires knowledge of relative feet and centre of mass (CoM) positions. Inertial measurement units (IMU) placed on each foot, and on the pelvis are useful in tracking these segments over time, but cannot track the relative distances between these segments. Further, drift due to strapdown inertial navigation results in erroneous relative estimates of feet and CoM positions after a few steps.

View Article and Find Full Text PDF

Ground Reaction Forces (GRF) during gait are measured using expensive laboratory setups such as in-floor or treadmill force plates. Ambulatory measurement of GRF using wearables enables remote monitoring of gait and balance. Here, we propose using an Inertial Measurement Unit (IMU) mounted on the pelvis to estimate the GRF during gait in daily life.

View Article and Find Full Text PDF

Ambulatory sensing of gait kinematics using inertial measurement units (IMUs) usually uses sensor fusion filters. These algorithms require measurement updates to reduce drift between segments. A full body IMU suit can use biomechanical relations between body segments to solve this.

View Article and Find Full Text PDF

Remote monitoring of gait performance offers possibilities for objective evaluation and tackling impairment in motor ability, gait, and balance in populations, such as elderly, stroke, multiple sclerosis, and Parkinson's. This requires a wearable and unobtrusive system capable of estimating ambulatory gait and balance measures, such as the extrapolated center of mass (XCoM) and dynamicmargin of stability. These estimations require the knowledge of 3-D forces and moments (F&M) and accurate foot positions.

View Article and Find Full Text PDF