Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The small ubiquitin-like modifier (SUMO) is an important post-translational modification that regulates the function of various proteins essential for DNA damage repair, genome integrity, and cell homeostasis. To identify protein SUMOylation effectively, an enrichment step is necessary, often requiring exogenous gene expression in cells and immunoaffinity purification of SUMO-remnant peptides following tryptic digestion. Previously, an antibody was developed to enrich tryptic peptides containing the remnant NQTGG on the receptor lysine, although the specifics of the structural interaction motif remained unclear. This study integrates sequencing, intact mass spectrometry, cross-linking mass spectrometry, and molecular docking to elucidate the structural interaction motifs of a SUMO-remnant antibody. Additional cross-linking experiments were performed using SUMOylated peptides and high-field asymmetric waveform ion mobility spectrometry (FAIMS) to enhance the sensitivity and confirm interactions at the paratope interface. This study establishes a robust framework for characterizing antibody-antigen interactions, offering valuable insights into the structural basis of SUMO-remnant peptide recognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895775PMC
http://dx.doi.org/10.1021/acs.jproteome.4c00717DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
sumo-remnant antibody
8
cross-linking mass
8
spectrometry molecular
8
molecular docking
8
structural interaction
8
epitope paratope
4
paratope mapping
4
sumo-remnant
4
mapping sumo-remnant
4

Similar Publications

Aberrant activation of fibroblast growth factor receptors (FGFRs) plays a critical role in tumorigenesis across multiple cancer types, driving the development of various FGFR inhibitors. Despite clinical advances, therapeutic efficacy remains limited by the emergence of drug resistance, primarily mediated by gatekeeper mutations in FGFRs. To overcome this challenge, we designed and synthesized a novel series of 7-(1-methyl-1-indole-3-yl)-5-pyrrolo[2,3-]pyrazine derivatives as covalent pan-FGFR inhibitors targeting both wild-type and gatekeeper mutants.

View Article and Find Full Text PDF

Argemone mexicana is one of the known herbaceous plants hosting bioactive isoquinoline alkaloids. In the current study, an endophytic fungal isolate was studied for anti-inflammatory potential and the identification of its bioactive molecule. An endophytic fungus AMEF-14 was obtained from this plant and identified as Cladosporium ramotenellum based on microscopy and molecular tools.

View Article and Find Full Text PDF

Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC  = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).

View Article and Find Full Text PDF

Note: An Integrated Miniature Time-of-Flight Mass Spectrometer System with 3D Printing Assisted Design of Versatile Pocket-Size Laser-Induced Acoustic Desorption Source.

J Am Soc Mass Spectrom

September 2025

Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China.

An integrated miniature time-of-flight mass spectrometer (TOF-MS) system coupled with a pocket-size 3D-printed laser-induced acoustic desorption (LIAD) source is described. This 3D-printed LIAD source utilizes only a miniature deceleration motor to achieve two-dimensional motion of the target surface, simplifying the source structure and improving the long-term stability of mass spectrometry measurements. It has been successfully applied to analyze the model molecule creatinine and ingredients in an energy beverage (Red Bull), where main natural nutrients were clearly identified.

View Article and Find Full Text PDF

Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.

View Article and Find Full Text PDF