Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contactless and conventional dielectrophoresis (DEP) microfluidic devices are extensively utilized in lab-on-a-chip applications, particularly for cell isolation and analysis. Nonetheless, these devices typically operate at low throughput and require high applied voltages, posing limitations for microfluidic cell isolation and separation. Addressing these challenges, this study explores the utilization of diverse micro-pillar geometries within the microfluidic device to augment THP-1 cell trapping efficiency numerically using FEM modeling. Furthermore, the simulations examine the influence of pillar gap and quantity on cell trapping efficiency in a contactless DEP device. Notably, elliptical pillars demonstrate superior cell trapping efficiency at elevated flow rates compared to alternative configurations, making the microchip more amenable for high-throughput cell separation, trapping, and isolation applications. Remarkably, employing elliptical pillars in a contactless DEP microfluidic chip yields nearly 100% cell trapping efficiency at higher flow rates. Ellipse configuration showed 122% higher cell trap efficiency at the maximum flowrate compare to the previous study with circular configuration. Additionally, it is observed that reducing the gap between pillars correlates with enhanced cell trapping efficiency. Simulation outcomes indicate that employing two rows of elliptical pillars with a 40-µm gap achieves optimal performance. The findings of this investigation underscore the importance of pillars in contactless DEP devices and provide valuable insights for future designs of such microfluidic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202400110DOI Listing

Publication Analysis

Top Keywords

cell trapping
20
trapping efficiency
20
microfluidic devices
12
contactless dep
12
elliptical pillars
12
cell
9
dep microfluidic
8
cell isolation
8
flow rates
8
pillars contactless
8

Similar Publications

Perovskite-silicon tandem solar cells have attracted considerable attention owing to their high power conversion efficiency (PCE), which exceeds the limits of single-junction devices. This study focused on lead-free tin-based perovskites with iodine-bromine mixed anions. Bromide perovskites have a wide bandgap; therefore, they are promising light absorbers for perovskite-silicon tandem solar cells.

View Article and Find Full Text PDF

This study investigates the potential protective effects of eugenol on cecal ligation puncture (CLP) induced sepsis rat model. CLP was used to induce sepsis in rats and then treated with eugenol at doses of 25 and 50 mg/kg, i.p.

View Article and Find Full Text PDF

For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".

View Article and Find Full Text PDF

Mitochondrial-Targeting Zwitterionic Nanomedicine Based on Tertiary Amine -oxide Polymers for Triple-Negative Breast Cancer Therapy.

Biomacromolecules

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.

View Article and Find Full Text PDF

Kaempferol as a multifaceted immunomodulator: implications for inflammation, autoimmunity, and cancer.

Front Immunol

September 2025

Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.

Kaempferol (KMF) is a dietary flavonoid exhibiting profound immunomodulatory effects across multiple immune cell populations. This review synthesizes current insights into how KMF regulates diverse immune cell populations and its therapeutic potential in inflammatory and immune-related disorders. KMF exhibits multifaceted effects on T cells.

View Article and Find Full Text PDF