Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To develop a machine learning (ML) model combining preoperative multiparametric diffusion-weighted imaging (DWI) and clinical features to better predict overall survival (OS) and recurrence-free survival (RFS) following radical surgery for pancreatic ductal adenocarcinoma (PDAC).

Materials And Methods: A retrospective analysis was conducted on 234 PDAC patients who underwent radical resection at two centers. Among 101 ML models tested for predicting postoperative OS and RFS, the best-performing model was identified based on comprehensive evaluation metrics, including C-index, Brier scores, AUC curves, clinical decision curves, and calibration curves. This model's risk stratification capability was further validated using Kaplan-Meier survival analysis.

Results: The random survival forest model achieved the highest C-index (0.828/0.723 for OS and 0.781/0.747 for RFS in training/validation cohorts). Incorporating nine key factors-D value, T-stage, ADC-value, postoperative 7th day CA19-9 level, AJCC stage, tumor differentiation, type of operation, tumor location, and age-optimized the model's predictive accuracy. The model had integrated Brier score below 0.13 and C/D AUC values above 0.85 for both OS and RFS predictions. It also outperformed traditional models in predictive ability and clinical benefit, as shown by clinical decision curves. Calibration curves confirmed good predictive consistency. Using cut-off scores of 16.73/29.05 for OS/RFS, Kaplan-Meier analysis revealed significant prognostic differences between risk groups (p < 0.0001), highlighting the model's robust risk prediction and stratification capabilities.

Conclusion: The random survival forest model, combining DWI and clinical features, accurately predicts survival and recurrence risk after radical resection of PDAC and effectively stratifies risk to guide clinical treatment.

Critical Relevance Statement: The construction of 101 ML models based on multiparametric quantitative DWI combined with clinical variables has enhanced the prediction performance for survival and recurrence risks in patients undergoing radical resection for PDAC.

Key Points: This study first develops DWI-based radiological-clinical ML models predicting PDAC prognosis. Among 101 models, RFS is the best and outperforms other traditional models. Multiparametric DWI is the key prognostic predictor, with model interpretations through SurvSHAP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833029PMC
http://dx.doi.org/10.1186/s13244-025-01915-9DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning model
8
preoperative multiparametric
8
predict survival
8
pancreatic ductal
8
ductal adenocarcinoma
8
clinical decision
8
decision curves
8
curves calibration
8
calibration curves
8

Similar Publications

Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.

View Article and Find Full Text PDF

Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.

View Article and Find Full Text PDF

To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.

View Article and Find Full Text PDF

Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.

View Article and Find Full Text PDF

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF