98%
921
2 minutes
20
Localized surface plasmon resonance (LSPR) is an optical phenomenon associated with noble metal nanostructures. The resonances result in sharp spectral absorption peaks as well as enhanced local electromagnetic fields, which have been widely used in chemical and biological sensing. Over the past decade, as label-free analytical method, LSPR sensors have gained considerable interest and undergone rapid development. In addition to conventional refractive-index sensing through resonant wavelength shift, molecular sensing by colorimetry and imaging techniques have also been developed. Moreover, the LSPR sensors have been integrated with other techniques such as micro/nano fluidics and artificial intelligence (AI) to enhance their functionality and performances. In this work, we provide an overview of the recent advancement in LSPR sensors technology, including refractive-index, colorimetric, and imaging-based sensors, as well as the incorporation of new technologies like AI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/adb6a4 | DOI Listing |
Virology
September 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:
Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.
Background: With the development of modern agriculture, neonicotinoid pesticides have been widely used due to their high efficiency and strong systemic properties. However, excessive use leads to the accumulation of residues in the food chain, threatening the ecosystem and human health. Pesticide residues are easily accumulated in oilseed crops and become concentrated during the edible oil refining process.
View Article and Find Full Text PDFZinc oxide-based nanocomposites are of great scientific interest due to their unique optical properties, making them promising materials for applications in plasmonic and sensor systems. In this study, we pay special attention to the analysis of the magnetic field-induced blue shift of the localized surface plasmon resonance (LSPR) peak in ZnO/Ag nanocomposites. This phenomenon was investigated because of its unexpected manifestation in nonmagnetic semiconductor-based systems that may have a potential for developing magnetically tunable plasmonic devices.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Xihua University, Chengdu 610039, PR China. Electronic address:
With the increasing concern for ecological environmental and food safety, the development of synergistic systems integrating efficient bisphenol trace sensing and green photocatalytic degradation has emerged as a current research focus. In this study, a novel surface-enhanced Raman scattering (SERS) sensing-degradation integrated platform was successfully developed for the detection and degradation of bisphenol through the uniform modification of hydrogen-bonded organic framework nanorods loaded with gold nanoparticles (HOFs@Au). Based on the remarkable molecular enrichment effect of the porous structure of HOFs and the strong localized surface plasmon resonance (LSPR) effect from the AuNPs, the composite system exhibited excellent trace detection performance.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
This study presents a biosensor based on cleaved graphene, compared with a graphene-gold nanoparticle structure, for detecting carcinoembryonic antigen (CEA), leveraging graphene's tunable resonance frequency and the structure's polarization-independent performance. This sensor consists of three layers: a gold substrate with a conductivity of 4.7 × 10, a silicon dioxide (SiO) dielectric layer with a permeability of 3.
View Article and Find Full Text PDF