A Transparent Polymer-Composite Film for Window Energy Conservation.

Nanomicro Lett

College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As living standards improve, the energy consumption for regulating indoor temperature keeps increasing. Windows, in particular, enhance indoor brightness but also lead to increased energy loss, especially in sunny weather. Developing a product that can maintain indoor brightness while reducing energy consumption is a challenge. We developed a facile, spectrally selective transparent ultrahigh-molecular-weight polyethylene composite film to address this trade-off. It is based on a blend of antimony-doped tin oxide and then spin-coated hydrophobic fumed silica, achieving a high visible light transmittance (> 70%) and high shielding rates for ultraviolet (> 90%) and near-infrared (> 70%). When applied to the acrylic window of containers and placed outside, this film can cause a 10 °C temperature drop compared to a pure polymer film. Moreover, in building energy simulations, the annual energy savings could be between 14.1% ~ 31.9% per year. The development of energy-efficient and eco-friendly transparent films is crucial for reducing energy consumption and promoting sustainability in the window environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832844PMC
http://dx.doi.org/10.1007/s40820-025-01668-6DOI Listing

Publication Analysis

Top Keywords

energy consumption
12
indoor brightness
8
reducing energy
8
energy
7
transparent polymer-composite
4
film
4
polymer-composite film
4
film window
4
window energy
4
energy conservation
4

Similar Publications

The Green Cochlea.

Braz J Otorhinolaryngol

September 2025

Clinical Research Department, MED-EL GmbH, Innsbruck, Austria.

Objectives: Healthcare systems contribute significantly to global greenhouse gas emissions through energy consumption and waste generation. This study aims to explore strategies to make cochlear implantation processes more environmentally sustainable and aligned with the United Nations' Sustainable Development Goals.

Methods: We examined various approaches including the use of bio-based and biodegradable materials, sustainable energy solutions, greener anesthetic practices, effective waste separation and recycling in operating rooms, and patient-centered strategies such as reducing travel and promoting early activation and fitting of cochlear implants.

View Article and Find Full Text PDF

Research Progress of Surfactant-Free Microemulsions: A Review.

Crit Rev Anal Chem

September 2025

Department of Civil Engineering, Architecture and Engineering, Northeast Petroleum University, Daqing, China.

Surfactant is usually considered the key component to form microemulsion. surfactant-based microemulsion (SBME) can also be called traditional microemulsion. It has a wide range of applications.

View Article and Find Full Text PDF

Chemically and Electromagnetically dual-enhanced COFs-Au@AgNPs SERS sensor integrated with deep learning for ultrasensitive detection of neonicotinoid pesticides.

Anal Chim Acta

November 2025

Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.

Background: With the development of modern agriculture, neonicotinoid pesticides have been widely used due to their high efficiency and strong systemic properties. However, excessive use leads to the accumulation of residues in the food chain, threatening the ecosystem and human health. Pesticide residues are easily accumulated in oilseed crops and become concentrated during the edible oil refining process.

View Article and Find Full Text PDF

Innovative UAPLE system coupled with UV-vis detection: a sustainable method for extracting and quantifying phenolics from rosemary.

Anal Chim Acta

November 2025

Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas (UNICAMP), Rua Pedro Zaccaria 1300, Limeira, 13484-350, São Paulo, Brazil. Electronic address:

Background: Monitoring industrial processes is critical for ensuring consistent product quality, as consumers expect uniformity across different production batches. In the case of herbal extracts, such as rosemary hydroalcoholic extracts, it is essential to control the yield of target compounds to maintain both the expected quality and safety. Typically, these extracts are produced in an extractor and then analyzed separately in a laboratory (offline).

View Article and Find Full Text PDF

Energy burden and asthma prevalence in U.S. cities: An emerging social determinant of health.

Sci Total Environ

September 2025

Department of Environmental Health Sciences, College of Integrated Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Population and Community Health, College of Public Health, The University of North Texas Health Science Center at Fort Worth, For

Background: Energy burden, defined as the inability to afford residential energy consumption, is a pressing public health issue globally and in the U.S. However, its impact on asthma remains largely unknown.

View Article and Find Full Text PDF