98%
921
2 minutes
20
Purpose: Myocardial ischemia-reperfusion (IR) injury, a significant challenge in cardiovascular treatment, is primarily driven by ferroptosis and mitochondrial dysfunction. Despite extensive research, no clinical therapies effectively target ferroptosis in IR injury. This study aims to develop selenium-quantum-dot-loaded porous silica nanospheres (Se@PSN) as a novel therapeutic approach to address IR injury.
Patients And Methods: Se@PSN were synthesized and tested for their reactive oxygen species (ROS) scavenging capabilities and biocompatibility. Additionally, the effects of Se@PSN on ferroptosis, mitochondrial damage, oxidative stress, and myocardial IR injury severity were evaluated.
Results: Se@PSN enhanced the stability of selenium quantum dots and exhibited strong ROS scavenging abilities. Additionally, Se@PSN exhibited excellent biocompatibility. The Se@PSN treatment increased GPX4 levels, effectively inhibiting ferroptosis in cardiomyocytes. Furthermore, Se@PSN promoted the expression of mitochondrial respiratory complexes, mitigating oxidative phosphorylation damage and preserving mitochondrial function. These effects collectively resulted in reduced myocardial loss, inflammation, and fibrosis following IR injury. Compared to PSN alone, Se@PSN showed superior therapeutic efficacy against IR injury.
Conclusion: Se@PSN exhibit great potential in reducing ferroptosis and protecting mitochondrial function, making them a promising therapeutic approach for the treatment of myocardial IR injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829639 | PMC |
http://dx.doi.org/10.2147/IJN.S500810 | DOI Listing |
Signal Transduct Target Ther
September 2025
Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.
View Article and Find Full Text PDFEthnopharmacological Relevance: Heart failure (HF), the terminal stage of various cardiovascular diseases, represents a significant threat to global health. Fuxin Decoction (FXD), a classical Traditional Chinese Medicine (TCM) formula, has demonstrated therapeutic efficacy in HF treatment. However, its bioactive components and precise mechanisms remain to be elucidated.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver pathology, lacks effective therapies. This study identifies ferroptosis-a lipid peroxidation-driven, iron-dependent form of cell death-as a central pathogenic mechanism in MASLD. Integrative proteomic and histopathological analyses of human and murine MASLD livers revealed marked ferroptosis activation, characterized by dysregulated iron metabolism (reduced FTH1 and GPX4; elevated ACSL4) and oxidative stress.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Nursing, Guangxi Medical University Nursing College, Nanning, Guangxi 530021, China. Electronic address:
The voltage-dependent anion channel (VDAC) family proteins can be subdivided into three isoforms: VDAC1, VDAC2, and VDAC3. As core channels of the mitochondrial outer membrane, these proteins exhibit paradoxical regulatory roles in cancer development. This review systematically summarizes their structural and functional characteristics, as well as the contradictory mechanisms in tumorigenesis and progression.
View Article and Find Full Text PDFMol Cell Biol
September 2025
Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.
View Article and Find Full Text PDF