98%
921
2 minutes
20
Treponema denticola is frequently isolated together with Porphyromonas gingivalis from the lesions seen in cases of chronic periodontitis and is considered a major pathogen of this disease. It has several virulence factors, including a major surface protein (Msp) and a major surface protease, dentilisin. The effect of these virulence factors on the host immune response remains to be elucidated, however. Toll-like receptors (TLRs) in the host can recognize pathogen-associated molecular patterns. Bacteria stimulate TLRs and activate the pro-inflammatory nuclear factor-kappa B pathway. Therefore, the aim of this study was to investigate the effect of T. denticola on TLR pathways. Toll-like receptor 4 and TLR2 reporter cell lines, which secrete alkaline phosphatase in response to TLR signals, were infected with the T. denticola wild type, an Msp-deficient mutant, a dentilisin-deficient mutant, or their extracts obtained via sonication. Signals from TLR2 or TLR4 cells were evaluated by alkaline phosphatase activity. Toll-like receptor 2 signals were detected in all T. denticola strains and sonication extracts, while no TLR4 signal was detected. Infection with the dentilisin-deficient mutant induced the strongest TLR2 signal among the strains. Sonication extracts of the wild type and Msp-deficient mutant showed the same level of TLR2 signaling. The TLR2 signal in the sonication extracts from the wild type was inhibited by Sparstolonin B, an antagonist of TLR2, in a dose-dependent manner. These results indicate that T. denticola is recognized by epithelial cells mainly via TLR2. The outer sheath structure may conceal potential ligands for TLR2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2209/tdcpublication.2024-0023 | DOI Listing |
J Am Chem Soc
September 2025
Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.
Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China.
Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.
View Article and Find Full Text PDFEur J Clin Pharmacol
September 2025
Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
Objective: This research aimed at evaluating the effectiveness and safety of nitazoxanide and escitalopram as adjuvant therapies in patients with rheumatoid arthritis (RA).
Methods: In this randomized controlled parallel study, 90 patients with active RA were randomized into three groups; group 1 (control group; n = 30) which received traditional therapy, group 2 (Nitazoxanide group; n = 30) which received traditional therapy plus 1 gm/day oral nitazoxanide, and group 3 (Escitalopram group; n = 30) which received traditional therapy plus 10 mg/day oral escitalopram for three months. At baseline and 3 months after treatment, clinical and functional assessments were done through the 28-joint count disease activity score using C-reactive protein (DAS28-CRP), the health assessment questionnaire-disability index (HAQ-DI), and the patient's global assessment (PGA).
Immunol Cell Biol
September 2025
Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India.
The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.
View Article and Find Full Text PDFAm J Transplant
September 2025
Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania
Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.
View Article and Find Full Text PDF