NIR-II Cyazulene Fluorophores with Adjustable Cycloalkenes and Spectroscopic Properties for Imaging Applications.

Adv Healthc Mater

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

NIR-II fluorescence imaging has shown broad application prospects in life science because of its deeper tissue penetration and higher spatiotemporal resolution. Developing NIR-II fluorophores with special spectroscopic properties and analytical functions has become a cutting-edge but challenging topic in this field. Herein, a series of azulene-based NIR-II fluorophores (called cyazulenes) with adjustable cycloalkenes and spectroscopic properties for imaging applications is reported. Cyazulenes (CA965, CA985, and CA1025) are constructed via the convenient coupling of cycloalkenes with azulene derivatives. They exhibit different H-aggregation and J-aggregation. Particularly noteworthy is that CA985 can form significant J-aggregates with strong and sharp NIR-II emission in biological media, and can be used for in vivo imaging of blood vessels and fine structures of collecting lymphatics in mice. Moreover, CA985 displays passive bone-targeted capacity, thereby enabling bone imaging. This study demonstrates the chemical impact of varying cycloalkenes on the aggregate formation and spectral properties of cyazulenes, which will advance azulene-based NIR-II fluorophores.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202404996DOI Listing

Publication Analysis

Top Keywords

spectroscopic properties
12
nir-ii fluorophores
12
adjustable cycloalkenes
8
cycloalkenes spectroscopic
8
properties imaging
8
imaging applications
8
azulene-based nir-ii
8
nir-ii
6
imaging
5
nir-ii cyazulene
4

Similar Publications

B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.

View Article and Find Full Text PDF

Comparative study of spectral properties of the bovine serum albumin complexes with acridine orange and methylene blue under the effect of millimeter range electromagnetic waves.

Electromagn Biol Med

September 2025

Laboratory of Biophysics of Sub-Cellular Structures, Scientific-Research Institute of Biology, Chair of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia.

Effect of millimeter range electromagnetic waves (MM EMW) with the frequency 51.8 GHz on the interaction of DNA-specific ligands-intercalators acridine orange (AO) and methylene blue (MB) with bovine serum albumin (BSA) has been studied. The measurements were implemented by the spectroscopic methods that open new opportunities for such goals.

View Article and Find Full Text PDF

Traditional electrochemical redox assessments offer insights into material properties for charge storage and catalytic kinetics but often fail to link these to specific surfaces, obscuring the structure-performance relationship. Here, we reveal the facet-dependent electrochemical redox behaviors and their connection to oxygen evolution reaction (OER) catalysis using Co(OH) nanosheets and nanorods as models. By correlating redox charge storage capacity and kinetics with distinct exposed surfaces, we uncover diffusion-controlled redox processes on the basal surface and non-diffusion-controlled behavior on the lateral surface and further utilize the distinct redox charging kinetics to differentiate the two.

View Article and Find Full Text PDF

Synthesis of 6(7)-Arylamino-4H-chromen-4-ones With D-A Structure and Their Photophysical Properties.

Luminescence

September 2025

School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, C

A series of 2-substituted 4H-chromen-4-ones 3a-3h containing triphenylamine or N-phenylcarbazole on the benzene ring were synthesized for the first time via the Suzuki coupling reaction. The photophysical properties of the compounds and their relationship to the structure of the compounds were investigated by methods such as spectroscopic analysis, single-crystal analysis, and theoretical calculations. The systematic results indicate that compounds 3a-3h have intramolecular charge transfer (ICT), aggregation-induced emission (AIE), and dual-state emission (DSE) effects with a wide range of fluorescence emission wavelengths (421-618 nm), showing the potential to be developed into a full-color fluorophore.

View Article and Find Full Text PDF

A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.

View Article and Find Full Text PDF