Modulating the PD-1-FABP5 axis in ILC2s to regulate adipose tissue metabolism in obesity.

Mol Ther

Laboratory of Mucosal Immunology, Department of Biomedical and Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, South Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, South K

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obesity is closely linked to metabolic dysregulation and chronic inflammation, which significantly impact immune cell functions in adipose tissue. Type 2 innate lymphoid cells (ILC2s) have emerged as key regulators of energy homeostasis, positioning them as promising targets for obesity management. However, the mechanisms governing ILC2 activity and their therapeutic potential in obesity are not fully understood. In this study, we demonstrate that ILC2s in obese adipose tissue exhibit increased PD-1 expression, leading to an exhausted phenotype with diminished cytokine production and proliferation. Elevated osteopontin (OPN) levels in adipose tissue are associated with higher PD-1 expression on ILC2s, while adipocyte-derived PD-L1 interacts with PD-1 to further impair ILC2 functionality. Importantly, blocking PD-1 signaling prevents weight gain and alleviates obesity-related metabolic dysfunctions. In addition, the adoptive transfer of PD-1-deficient ILC2s reduces diabetic phenotypes in obese models. Mechanistically, PD-1 signaling drives metabolic reprogramming in ILC2s, affecting fatty acid uptake and energy metabolism through the downregulation of fatty acid binding protein 5 (FABP5). These results, corroborated by findings in human adipose tissue, suggest a conserved OPN-PD-1 axis. Our study identifies the OPN-PD-1-FABP5 pathway as a crucial regulator of ILC2 function in adipose tissue and presents an emerging immune cell-based therapeutic target for obesity treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997476PMC
http://dx.doi.org/10.1016/j.ymthe.2025.02.015DOI Listing

Publication Analysis

Top Keywords

adipose tissue
24
pd-1 expression
8
pd-1 signaling
8
fatty acid
8
ilc2s
6
adipose
6
tissue
6
obesity
5
pd-1
5
modulating pd-1-fabp5
4

Similar Publications

Cardiac adipose tissue is normally present in the epicardium, but a variable amount can also be present in the myocardium, particularly in the subepicardial regions of the right ventricular anterolateral and apical regions. Pathological adipose tissue changes may occur in both ischemic (previous myocardial infarction) and nonischemic (previous myocarditis, arrhythmogenic cardiomyopathy, lipomatous hypertrophy of the interatrial septum, cardiac lipomas and liposarcomas) conditions, with or without extensive replacement-type myocardial fibrosis. Cardiac magnetic resonance is the gold standard imaging technique to characterize myocardial tissue changes and to distinguish between physiological and pathological cardiac fat deposits.

View Article and Find Full Text PDF

Fibrosis in visceral white adipose tissue (vWAT) is closely associated with tissue dysfunction and systemic metabolic disturbances in obesity. Identifying pathways amenable to drug intervention to prevent fibrotic changes in vWAT is a critical step in addressing the array of metabolic complications associated with obesity. CD9 adipose progenitors (Progs) are key drivers of vWAT fibrosis.

View Article and Find Full Text PDF

Dyslipidemia is considered a crucial risk factor for high risk of atherosclerosis and cardiovascular diseases. Cumin and coriander seeds are well-known flavoring agents that contain nutraceutical properties and appear to have beneficial health effects. A study was therefore conducted to investigate the effects of cumin and coriander seeds on body weight, abdominal fat and lipid profile in rats.

View Article and Find Full Text PDF

Purpose: To objectively quantify, in East Asians and Caucasians, the width and distribution of the retro-orbicularis oculi and frontalis fat (ROOF) pad, subcutaneous fat, and orbicularis oculi muscle (OOM) at the superior orbital rim margin as well as 5 mm superior and inferior to this point.

Methods: Thirty adults were studied by high-resolution, surface coil MRI. In the quasi-sagittal image through the globe center, the ROOF, subcutaneous fat, and OOM thickness were measured anterior to the orbital septum, at 3 points: at the superior orbital rim, and 5 mm superior, and 5 mm inferior to the rim.

View Article and Find Full Text PDF

Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.

View Article and Find Full Text PDF