98%
921
2 minutes
20
Ethnopharmacological Relevance: Triptolide (TP) is an abietane-type diterpenoid isolated from the traditional Chinese herb Tripterygium wilfordii Hook. F, which is used to relieve rheumatism, alleviate joint pain and swelling, and promote blood circulation for more than 600 years in China. The most common preparations containing TP from Tripterygium wilfordii Hook F, which are Tripterygium tablets and Tripterygium glycoside tablets, are widely used in clinical for treating rheumatoid arthritis and other autoimmune diseases at present. However, the clinical application is hindered by severe systemic toxicity induced by TP, especially hepatotoxicity. It is crucial to discover potent and specific detoxification strategy for TP.
Aim Of Study: According to our previous study, TP-induced hepatotoxicity is primarily related to macrophages. This study aimed to investigate the alleviation effects of macrophage depletion on the TP-induced liver injury in mice and to explore the related mechanisms by integration of metabolomics and proteomics.
Materials And Methods: Mice were treated with clodronate liposomes to deplete macrophage before administration of triptolide. The alleviation effects were evaluated by biochemical analysis of serum and histopathology observation of the hepatic tissues. Metabolomics and proteomics were carried out to explore the mechanism of macrophage depletion on triptolide-induced liver injury. The levels of mRNA and protein of TLR4- MyD88-NF-κB axis were further detected.
Results: The altered levels of biochemistry indicators, including aminotransferase (ALT) and aspartate aminotransferase (AST), albumin (ALB), and γ-glutamyltranspeptidase (GGT) were significantly recovered, and histopathological liver injury also showed restoring tendency in mice with macrophage depletion compared to mice with TP-treatment. The inflammation indicator interleukin-6 (IL-6) and interleukin-1β (IL-1β) were recovered significantly after depletion of macrophage. Results of metabolomics and proteomics demonstrated that macrophage depletion exerted protective effects on triptolide-induced liver injury by regulating 85 metabolites and 202 proteins. Joint analysis of multi-omics data suggested macrophage depletion could regulate lipid metabolism and maintain inflammatory homeostasis. The increased expression of NF-κB, TLR4, and MyD88 were decreased after depletion of macrophage.
Conclusion: TP-induced hepatotoxicity is mainly associated with dysfunction of macrophages and imbalance of inflammatory homeostasis. The findings of this study may help facilitate the development of novel therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2025.119485 | DOI Listing |
Ann Surg Oncol
September 2025
Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
Background: RUNX3 acts as a tumor suppressor gene in non-small-cell lung cancer (NSCLC), yet its specific biological mechanism is still unclear. This study aimed to uncover tumor microenvironment (TME) changes in NSCLC with varying RUNX3 expression statuses through single-cell RNA sequencing.
Patients And Methods: In total, seven patients with NSCLC with detailed pathological data were involved, with three both paracancerous and cancerous tissue samples.
J Pharmacol Exp Ther
August 2025
Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Center for Immunology
We evaluated the antitumor effects of remodeling the MC17 mouse sarcoma microenvironment (SME) by targeting urokinase-type plasminogen activator receptor (uPAR)- and epidermal growth factor receptor (EGFR)-expressing cells. Specifically, we used eBAT (a bispecific ligand-targeted toxin directed to EGFR and uPAR), and its mouse counterpart, meBAT, to ablate uPAR- and/or EGFR-expressing cells. We chose the MC17 model because the cells are resistant to eBAT, allowing us to exclusively evaluate the role of uPAR- and EGFR-expressing cells in the SME.
View Article and Find Full Text PDFReprod Biol
September 2025
Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China. Electronic address:
Gestational diabetes mellitus (GDM) is a common and serious complication during pregnancy. Depleted next-generation probiotic, Akkermansia muciniphila (AKK) in GDM women indicates its potential on GDM prevention. However, the functions and mechanisms of AKK on GDM remain unclear.
View Article and Find Full Text PDFThe tumor microenvironment (TME) of chronic inflammation-associated cancers (CIACs) is shaped by cycles of injury and maladaptive repair, yet the principles organizing fibrotic stroma in these tumors remain unclear. Here, we applied the concept of hot versus cold fibrosis, originally credentialed in non-cancerous fibrosis of heart and kidney, to lung squamous cell carcinoma (LUSC), a prototypical CIAC. Single-cell transcriptomics of matched tumor and adjacent-normal tissue from 16 treatment-naive LUSC patients identified a cold fibrotic architecture in the LUSC TME: cancer-associated fibroblasts (CAFs) expanded and adopted myofibroblast and stress-response states, while macrophages were depleted.
View Article and Find Full Text PDFAlveolar macrophages (AMs) are the first immune cells to encounter Mycobacterium tuberculosis (Mtb) in the lungs, but they frequently fail to eliminate this causative agent of tuberculosis (TB), allowing Mtb to persist or replicate. Interstitial macrophages (IMs) are recruited to restrict Mtb growth and limit immune evasion. While IMs have been implicated in the control of acute Mtb infection, their role during latent tuberculosis infection (LTBI) has not yet been explored.
View Article and Find Full Text PDF