A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Telecom-Wavelength Single-Photon Emitters in Multilayer InSe. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of robust and efficient single-photon emitters (SPEs) at telecom wavelengths is critical for advancements in quantum information science. Two-dimensional (2D) materials have recently emerged as promising sources for SPEs, owing to their high photon extraction efficiency, facile coupling to external fields, and seamless integration into photonic circuits. In this study, we demonstrate the creation of SPEs emitting in the 1000-1550 nm near-infrared range by coupling 2D indium selenide (InSe) with strain-inducing nanopillar arrays. The emission wavelength exhibits a strong dependence on the number of layers. Hanbury Brown and Twiss experiments conducted at 10 K reveal clear photon antibunching, confirming the single-photon nature of the emissions. Density-functional-theory calculations and scanning-tunneling-microscopy analyses provide insights into the electronic structures and defect states, elucidating the origins of the SPEs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c13888DOI Listing

Publication Analysis

Top Keywords

single-photon emitters
8
telecom-wavelength single-photon
4
emitters multilayer
4
multilayer inse
4
inse development
4
development robust
4
robust efficient
4
efficient single-photon
4
spes
4
emitters spes
4

Similar Publications