98%
921
2 minutes
20
Water scarcity and labor shortage pose significant challenges in rice farming. Direct-seeded rice (DSR) is an efficient method that conserves water, reduces labor costs, and allows for full mechanization of cultivation. However, variable planting depth in undulated field leading to deep/shallow sowing of rice seeds during mechanical sowing presents a major hurdle, as existing varieties lack tolerance to deep sowing. To address this, a mapping population comprising 150 F lines, derived from MTU 1010 and AUS295, was developed and phenotyped for emergence from deep soil depth-related traits, including days of emergence (DE), percent germination (PG), mesocotyl length (ML), and coleoptile length (CL). The correlation revealed that DE has a significant negative correlation with PG, ML, and CL, whereas PG, ML, and CL are all positively correlated with each other. The mapping population was genotyped with mid-density SNP assay (1k-RiCA), and a linkage map was established with 414 polymorphic SNP markers. A total of 16 QTLs were identified for four traits, with phenotypic variance explained (PVE) ranging from 6.63% to 19.6% in the WS22. These included 5 QTLs for DE, 3 QTLs for PG, 4 QTLs for ML, and 4 QTLs for CL. Out of 16 QTLs identified, 12 were major effect QTLs ( , , , , , , , ) and 4 were minor effect QTLs ( ). During DS23 season, QTL analysis for DE and PG traits identified seven and three QTLs, respectively. Out of the ten QTLs identified in DS23 season, eight were stable across the season. This study reported 11 novel QTLs, while 7 had been previously reported. The study pinpointed three QTL hotspot regions: one on chromosome 1 ( , ) and two on chromosome 2 ( ) and ( ). Candidate gene analysis in the identified QTL regions found two genes associated with hormonal pathways: for gibberellin signaling and for abscisic acid signaling. Additionally, one gene () associated with early seedling vigor and another () regulates germination through coleoptile growth. The identified QTLs, genes, and breeding lines from this study provide valuable resources for developing rice varieties with enhanced tolerance to deep soil emergence, making them well-suited for mechanized DSR systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814172 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1512234 | DOI Listing |
Plant Genome
September 2025
Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, Victoria, Australia.
Global wheat (Triticum aestivum L.) production faces significant challenges due to the destructive nature of leaf (Puccinia triticina; leaf rust [Lr]), stem (Puccinia graminis; stem rust [Sr]), and stripe (Puccinia striiformis; stripe rust [Yr]) rust diseases. Despite ongoing efforts to develop resistant varieties, these diseases remain a persistent challenge due to their highly evolving nature.
View Article and Find Full Text PDFPlant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDFFront Immunol
September 2025
Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Parque Tecnológico de Ciencias de la Salud (PTS), Granada, Spain.
Introduction: The COVID-19 pandemic had significant global public health consequences, affecting over 200 countries and regions by 2020. The development and efficacy of specific vaccines, such as the mRNA-1273 (Spikevax) vaccine developed by Moderna Inc., have substantially reduced the impact of the pandemic and mitigated its consequences.
View Article and Find Full Text PDFInbred lines of , a wild relative of cultivated watermelon, are widely used as rootstocks to control soil-borne diseases for watermelon ( ) production. The most commonly used rootstock, 'Carolina strongback' (Syngenta, Basel, Switzerland) flowers weeks later than commercial watermelon cultivars, which delays the onset of female flowering (DFF) of the scion, leading to an undesirable delay in fruit maturity and harvesting. Understanding the genetics of DFF in a population will facilitate the development of rootstocks with the early flowering habits preferred for commercial production.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
College of Agriculture, Northwest A&F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, Xianyang, 712100, China.
By constructing a high-density genetic linkage map using a recombinant inbred line (RIL) population from two sorghum lines with distinct variations in plant height and brix content, eight genetic loci were identified, and candidate genes associated with these traits were predicted. Sorghum, recognized as a crucial forage and energy crop, exhibits yield and quality influenced by plant height and sugar content traits. Considering the complex genetic architecture of plant height and sugar content, this study utilized a sorghum recombinant inbred line population comprising 250 lines to elucidate the phenotypic variation and genetic foundations of these traits.
View Article and Find Full Text PDF